The Effects of Ergonomic Stressors on Process Tool Maintenance and Utilization

Technology Transfer # 98023456A-ENG SEMATECH March 31, 1998

Abstract:

This study examines ergonomic stressors associated with front-end process tool maintenance, relates them to decreased machine utilization, and proposes solution strategies to reduce their negative impact on productivity. Member company ergonomists observed technicians performing field maintenance tasks on seven different bottleneck tools and recorded ergonomic stressors using SEMaCheck, a graphics-based, integrated checklist developed by Sandia National Laboratories. The top ten stressors were prioritized according to a cost formula that accounted for difficulty, time, and potential errors. Estimates of additional time on a task caused by ergonomic stressors demonstrated that machine utilization could be increased from 6% to 25%. Optimal solution strategies were formulated based on redesign budget, stressor cost, and estimates of solution costs and benefits.

Keywords: Ergonomics, Maintenance, Cost Analysis, Overall Equipment Effectiveness, Equipment

Productivity Analysis

Authors: Dwight Miller (Sandia National Laboratories)

Approvals: Walter Worth, Program Manager

Bob Duffin, Director

Laurie Modrey, Technical Information Transfer Team Leader

Table of Contents

1	1.1 Purpos1.2 Results	E SUMMARYe and Methodologys.	1 1
2	2.1 Backgr	counde	3
3	APPROACE	H – TASKS AND DELIVERABLES	4
4	4.1 Tool Se4.2 Tool A4.3 Site Pre	electionssignmentotocol	5 6
5	 5.1 The Mo 5.2 Combi 5.3 Worst 5.4 Worst 5.5 Addition 	ost Significant Ergonomic Stressors ned Cost Scores Tools Stressors for Each Tool Type onal Time ons to Stressors	12 16 20 22
6	 6.1 Most S 6.2 Negation 6.3 Solution 6.4 What C 6.5 What C 6.6 Were the 	IONS Dignificant Stressors Ve Impact of Stressors On Strategies Can Suppliers Do? Can Users Do? The Methods Effective? The Methods Effective? The Industry	
7	REFERENC	CES	29
ΑF	PPENDIX A	Literature Search	
ΑF	PPENDIX B	Data Collection Techniques	32
AF	PPENDIX C	Field Slides for Maintenance Staff Focus-Group Session	34
AF	PPENDIX D	Sandia Ergonomic Maintenance Integrated Checklist	
AF	PPENDIX E	PTAB Suggestions for Checklist Revision	
ΑF	PPENDIX F	Revised SEMaCheck	
AF	PPENDIX G	Complete Data Set	73
ΑF	PPENDIX H	Technicians' and Observers' Solutions	84

APPENDIX I.	Solutions for Top Ten Stressors	85
APPENDIX J	Solution Strategies	86
APPENDIX K	Individual Tool Problems/Solutions	80

List of Figures

Figure 1	Examples of Typical Physical Stressors Experienced in Maintenance Tasks	11
Figure 2	Pareto Diagram of Stressor Groups for All Observations	12
Figure 3	Pareto Diagram of Stressor Groups for Error-Likely Observations	13
Figure 4	Pareto Diagram of Stressor Blocks	14
Figure 5	Pareto Diagram of Most Frequently Observed Items	15
Figure 6	Pareto Diagram of Stressors Causing Most Additional Time	15
Figure 7	Frequency Distribution of 250 Cost Scores	18
Figure 8	Cost Scores Attributed to Top Ten Stressors	19
Figure 9	Observations Attributed to Top Ten Stressors	19
Figure 10	Mean Cost Scores and Number of Observed Stressors for the Seven Machines	20

List of Tables

Table 1	Targeted Tools and Their Inclusion Scores	6
Table 2	PTAB Tool Observation Assignments	6
Table 3	Maintenance Tasks Observed	10
Table 4	Ranges of Cost Score Formula Factors	17
Table 5	Correlation Matrix of Cost Score Factors	17
Table 6	Top Ten Ergonomic Stressors	18
Table 7	Mean Cost Scores by PTAB Member	21
Table 8	Mean Cost Scores Split by Observer and Machine	21
Table 9	Mean Cost Scores by Machine Type	21
Table 10	Highest Cost Stressor Blocks for Each Tool Type	22
Table 11	Overall Percentage of Time Wasted for Each Machine Studied	23
Table 12	Overall Percentage of Time Wasted by Tool Type	23
Table 13	Optimal Solution Set for Budget of One-Third of Total Cost	24

Acknowledgements

The author would like to acknowledge the ESH thrust director Scott Elrod, program manager Walter Worth, and co-project manager Lisa Pelc at SEMATECH for their support and guidance throughout this project. Lisa, with whom I worked closely for 14 months, was the driving force that made this project a success. She brought everyone together as a team, kept everyone on track, and helped solve technical problems throughout the project. Many thanks also go to the member company ergonomists who collected the data at their sites and participated on the PTAB: Todd Pew (IBM), Tom Sullivan (DEC), Dana McKinney (HP), Kim Spencer, and Carey Newton (AMD). I am especially grateful for the technical assistance in data analysis provided by my colleagues Hugh Whitehurst, Jim Campbell, and Laura Swiler of the Systems Reliability Department at Sandia National Laboratories.

1 EXECUTIVE SUMMARY

1.1 Purpose and Methodology

The purpose of this study was to identify the most significant physical and cognitive ergonomic stressors associated with front-end tool maintenance, estimate their negative impact on productivity and the cost of ownership, and propose strategies to reduce the impact. A method to gather actual, objective field data was developed by Sandia National Laboratories (SNL) using a graphics-based integrated checklist, SEMaCheck. The Project Technical Advisory Board (PTAB) members collected stressor data at their respective sites. Because time and resources did not permit a large survey of all processing equipment, an inclusion score was developed for targeting specific machines that had high downtime, cost, repair complexity, and number of machines in the field. Seven "bottleneck" tools were ultimately selected for the study. Six ergonomists observed 28 of the least favored maintenance tasks on the seven bottleneck tools and recorded 250 observations of instances where ergonomic stressors contributed to task difficulty, increased task duration, or increased the likelihood of human error. SNL, with help from the PTAB, developed a combined score for each observation based on multi-attribute utility theory. Each attribute was weighted to represent its relative importance and combined in a mathematical formula to model the combination of perceived costs. The factors combined were inclusion score, frequency of the task, task difficulty, additional time required, and error consequence.

1.2 Results

After examining the highest scoring 25 stressors, similar items were combined, resulting in the following list of the top ten stressors:

Ergonomic Stressor

- 1. Difficult enclosure panel removal
- 2. Kneeling, prolonged standing with knees bent
- 3. Arm lifting, one and two arms
- 4. Reaches, over the shoulder, etc.
- 5. Difficult component access
- 6. Poor body access, trunk twist or flex
- 7. Inadequate visual access or lighting
- 8. Inadequate arm/hand/finger access
- 9. Two-person lifting, no weight labels on heavy objects
- 10. Pinch grip, manipulating small objects

Eighty-two of the 250 observations were judged to involve stressors that increased the duration of a task, for a total of 777 additional minutes. When computed as a proportion of additional time divided by summed nominal task lengths (as estimated by the maintenance technicians doing the work), a percentage of additional time resulting from ergonomic stressors was obtained:

$$\frac{777 \text{ min.}}{2924 \text{ min.}} \times 100 = 26.6\%$$
 additional time

Of the individual machines, the Nikon Steppers had the highest percentage of additional time at 53%, while the SVG Micrascan had the lowest at 1%. The table below lists the additional time, nominal task length, and percentage of time wasted for the seven machines studied.

Machine	Add'l	Task	Percent
Applied 5000	63	210	30%
Applied 9500	80	180	44%
Eaton	235	510	46%
SVG Micrascan	4	410	1%
Nikon	37	70	53%
Novellus	62	196	32%
Varian	296	1348	22%

The negative impact of the ergonomic stressors on productivity was estimated by examining the cost of ownership (COO) equation and identifying the impacts on its factors. Maintenance costs mostly affect the sum of recurring costs in the numerator. However, when a tool is installed, the types of tasks that are performed are very similar, if not identical, to maintenance tasks. Therefore, benefits brought to recurring costs in the form of less time spent, fewer technicians needed, reduced opportunity for errors, etc. can be applied to the portion of fixed costs associated with tool installation. The scrap factor might be affected positively if the reduced probability of errors in machine calibration helps to avoid processing wafers out of tolerance. In the denominator of the COO equation, lifetime, throughput rate, and yield remain unaffected by ease of maintenance. However, utilization can increase as a result of reduced maintenance time, especially for tools with low utilization. For instance, if utilization for a tool is nominally 0.80, and maintenance time is reduced 25%, as suggested is possible from the results, utilization can increase (1.0-.8) x .25 = .05, to .85, a 6% improvement. If a tool with lower utilization (e.g., 0.65) were to benefit from the kind of reductions in maintenance time found in the two implanters studied (45%), the increase in utilization can be substantial (1.0–.65) \times .45 = .157, or 25%.

A simulation using Two Cool software calculated the savings possible in a low pressure chemical vapor deposition (CVD) tool with only 5 hours maintenance per week. The baseline calculation for COO was \$3.49 per wafer-layer. With a 30% reduction in maintenance time, the COO was reduced to \$3.45. If the labor force were reduced by one maintenance technician, another \$0.05 was saved, causing the COO to decrease by a total of \$0.09. This reduction multiplied by six layers and 20,000 wafers a month for 12 months adds up to \$129,600 per year or \$648,000 over five years. This is not an insignificant figure when combined with potential savings from multiple machines of the same type or other types of tools.

Various solutions are suggested, consisting of recommendations made by the maintenance technicians performing the work, the observing ergonomists, and group consensus recommendations offered by the PTAB. Suggested strategies to reduce ergonomic stressors emphasize combining cost-effective means of simplifying panel removal, using guide-locating devices such as pins to help support parts while fastening, improving physical and visual access to tool components, reducing lifting requirements, and using captive fasteners. Estimates of solution effectiveness and cost were entered into an optimization algorithm that generated

solution strategies for graduated levels of spending (see Appendix J). The notion of reducing tool footprint as a cost-savings tactic is revisited, given the inverse relationship with ease and cost of maintenance.

Based on field experience, the SEMaCheck checklist was revised for enhanced usability in the field. Member companies can use SEMaCheck to further examine ergonomic stressors associated with maintenance activities in their fabs; supplier companies can use it in equipment design cycles to identify and avoid potential ergonomic stressors in their machines' projected maintenance scenarios.

1.3 Conclusions

This study has demonstrated that machine design issues and related stressors present major impediments to efficient maintenance activities and that ergonomic solutions have the potential to improve machine utilization significantly. Machine users are encouraged to demand enhanced serviceability with fewer physical and cognitive stressors. Suppliers are encouraged to put more emphasis in the ergonomic design of their products to help them be more competitive and to meet the additional maintainability requirements of their customers.

2 INTRODUCTION

2.1 Background

The genesis for this study was a meeting in May 1996, at which several ergonomists from member companies met to discuss the state of ergonomics in the microelectronics industry with representatives from SEMATECH's Environment, Safety, and Health (ESH) thrust area. Among the outcomes of this meeting was a list of potential topics for research, a recommendation not to do another cumulative-trauma-disorders (CTDs) study, and a resolution to translate any study results or industry impacts in terms accessible to industry executives. As a result of that meeting and subsequent correspondence, discussions, and negotiations on a statement of work, Sandia National Laboratories (SNL) partnered with SEMATECH in November 1996 to investigate the impact of ergonomic stressors on wafer processing. For the purposes of this study, ergonomics is defined as follows:

ergonomics [also called human factors engineering] discovers and applies information about human behavior, abilities, limitations, and other characteristics to the design of tools, machines, systems, tasks, jobs, and environments for productive, safe, comfortable, and effective human use (Sanders and McCormick, 1987, after Chapanis, 1985).

Two literature searches preceded the finalized statement of work; however, very little useful literature was found addressing ergonomics in cleanroom operations. See Appendix A for a summary of the findings of the two literature searches.

The first PTAB meeting for this project was held January 28–29, 1997, in Austin. In addition to project managers from SEMATECH and SNL, ergonomists from member companies participated. One major decision was to concentrate on *productivity* issues and de-emphasize factors relating to work-related CTDs and their associated costs. This decision was based on examination of the cost-of-ownership formula and the realization that a small improvement in

machine utilization would far outweigh any decrease in labor-related expenses associated with lost work days. Another project-defining decision was to study ergonomic factors associated with *maintenance* activities. This decision was based on the recognition that operator efficiencies are difficult to measure and improve, while machine downtime is a universal fact of life in fabs and is relatively straightforward to measure.

2.2 Purpose

The purpose of the study was to identify the most significant physical and cognitive ergonomic stressors associated with front-end tool maintenance, estimate their negative impact on productivity and the cost of ownership, and propose a strategy to reduce the impact. Stressors are defined as any external or internal forces that cause bodily or mental tension, i.e., stress (Swain and Guttmann, 1983). Ergonomic physical stressors include forceful exertions, repetitive motions, awkward postures, temperature extremes, inadequate lighting, etc. Examples include prolonged crouching, repeated lifting, extended reaching, and the like. Cognitive stressors cause stress by forcing the maintenance technician to engage in difficult perceptual or thinking activities. Examples of cognitive stressors include poorly labeled displays, difficulty in diagnosing a fault in the machine's software because of inadequate job aids, and the lack of a checklist or system documentation to help remember all the steps in a maintenance task.

3 APPROACH – TASKS AND DELIVERABLES

Because objective field data were preferred over subjective estimates, a method of field data collection had to be developed. Also the PTAB members themselves decided to collect ergonomic-stressor data at their respective sites. SNL developed the field observation techniques and tools for them to use and analyzed the data after collection. The following tasks formed the basis for a project plan:

- 1. Conduct a literature search
- 2. Define target activities, and stressor types
- 3. Identify candidate tools for field observation
- 4. Develop a field checklist and protocol for use
- 5. Assign PTAB members to specific tools in their fabs
- 6. Collect data
- 7. Analyze data
- 8. Create prioritized list of stressors
- 9. Calculate impact of stressors using cost-of-ownership formula
- 10. Develop a generic solution strategy for tool designers
- 11. Refine the checklist based on field experience and make available to member companies
- 12. Deliver tool-specific results to suppliers

The major SNL deliverables for the study were identified by the PTAB as follows:

- 1. A questionnaire/survey tool to help identify ergonomic stressors in the field
- 2. A prioritized list of physical and cognitive stressors found in front-end tool maintenance
- 3. A statement about the relationship between the stressors and fab productivity
- 4. Strategies to address the reduction of the top stressors

4 METHOD

4.1 Tool Selection

To target specific machines and maintenance tasks, the PTAB members returned to their fabs with a set of questions to help identify candidate tools for study. Since "bottleneck" tools had the most severe impact on fab productivity, each member sought help in identifying these tools were in their fabs. A bottleneck tool was defined as one that had a relatively short mean time between failure (MTBF) or long mean time to repair (MTTR) and that was on the critical path to successful wafer processing (i.e., no substitute processing paths were available). A formula was developed to rank the tools based on characteristics of unavailability, exposure, and repair complexity. The formula was later revised and is shown as Equation 1:

```
Equation 1. Machine Inclusion Score = (100\text{-a})\text{m}(1+\text{c}/10)(1+\text{v}/\$3.5\text{M})\text{n} where:

a = machine availability as a %

m = number of machines at PTAB member's site*

c = estimate of tool complexity** (0,1, \text{ or } 3)

v = estimated cost of new tool

n = number of PTAB member companies that use the tool

* 1–4 tools, m = 1 9–15 tools, m = 3

5–8 tools, m = 2 >15 tools, m = 4

**Deposition, c = 1 Implant, c = 3

Track, c = 1 Stepper, c = 3

Etch, c = 1
```

PTAB members calculated their own scores for candidate tools so that data about the numbers of tools at any given site would not have to be shared with other member companies. The eight tools with the highest inclusion scores are shown in Table 1.

Tool	Inclusion Score
1. Applied CVD 5000	1960
2. Novellus Concept One	1344
3. Varian Implanter V500	976
4. Nikon Stepper	936
5. SVG Micrascan Stepper	600*
6. Eaton Implanter 200	432
7. Applied Implanter 9500	292
8. Genus Implanter	224

 Table 1
 Targeted Tools and Their Inclusion Scores

4.2 Tool Assignment

Data were collected with enough overlap to assure coverage of all tools and repeated measures on most. Tool assignments are shown in Table 2.

PTAB Member	Member Company Site	Tools
1	A	Varian SVG
2	В	Varian Applied 9500 Genus
3	С	Varian Nikon Eaton
4	D	Varian Applied 9500
5	Е	Nikon Eaton SVG
6	F	Applied 5000 Nikon
7	G	Applied Novellus

Table 2 PTAB Tool Observation Assignments

4.3 Site Protocol

SNL developed a process to identify the most ergonomically demanding maintenance tasks. It started with sending PTAB members general information on data-collection techniques, including the questionnaire, the personal interview, the focus group interview, and five types of direct observation (see Appendix B for the complete information). The PTAB decided to use the focus-group technique with maintenance personnel to identify the most ergonomically challenging scheduled and unscheduled maintenance tasks (see Appendix C for materials used by

^{*}estimated with incomplete data

the PTAB in this process). This was followed by direct observation for real-time field identification of ergonomic stressors within the tasks. The process for identifying candidate tasks included the following:

- 1. Scheduling a focus group meeting with maintenance supervisor(s)
- 2. Explaining the project and types of data to be collected
- 3. Giving examples of desired data and undesired data
- 4. Creating a list of challenging maintenance tasks
- 5. Voting on the most difficult tasks and ranking the list

The PTAB member then waited for the next scheduled (or unscheduled) opportunity to observe one of the top tasks identified in the focus group and used the checklist to record observed physical and cognitive ergonomic stressors. Videotapes were made of the most difficult tasks if the equipment was available and management approved. All data were sent to SNL for analysis.

4.4 Checklist

Checklists are typically used as memory joggers, preventing wanted activities from being inadvertently forgotten. Most critical, lengthy industrial tasks employ checklists to help workers remember each task segment or perform tasks correctly. To avoid additional equipment downtime in the member company fabs, maintenance tasks had to be observed "over the shoulder" in "real" time. The literature was searched for an acceptable existing instrument, but none was found. Consequently, a data-recording checklist was developed that met the following criteria:

- 1. Observation of on-task behaviors, not preparatory tasks
- 2. Real-time observation and quick-access recording
- 3. Non-invasive, non-intrusive to maintenance personnel
- 4. Include all significant physical and cognitive stressors
- 5. Used by qualified, experienced users
- 6. Worst stressors emphasized, minor ones not recorded
- 7. Time inefficiencies and potential acute injuries emphasized
- 8. Recording step or task segment associated with stressor
- 9. Recording ergonomic difficulty of task (stressor severity)
- 10. Recording additional time spent on task due to stressor
- 11. Recording potential errors and severity of consequences
- 12. Timed non-servicing activities such as rest breaks
- 13. Recording suggested solutions to stressors
- 14. Record by exception not a task or functional analysis

Existing ergonomic checklists were also consulted for content, but none were designed for microelectronics manufacturing or had all of the features needed. Several ergonomic checklists were examined for style and usability, but many were too wordy to use effectively in a time-critical environment. It was also decided that a graphics-based checklist would be best for quick access and recognition of items.

The checklist developed contained 210 individual stressors, 137 of which were depicted with individual graphical figures portraying the physical or cognitive ergonomic stressor (see Appendix D). The checklist was named SEMaCheck, for Sandia Ergonomic Maintenance Checklist. Unlike most ergonomic checklists designed to identify stressors that contribute to long-term work-related CTDs, the stressors in SEMaCheck could potentially slow down the work or cause acute injury (which could also slow down the work). An experienced ergonomist would note that many more benign stressors, usually addressed in office or shop-floor ergonomic worksite evaluations, were not included in SEMaCheck. The stressors were also compared for consistency with the ergonomic advice given in SEMATECH's *Application Guide for S2-93 and S8-95*. The ten topical "chapters" of the checklist are as follows:

- 1. Diagnosis and Computer Interaction
- 2. Documentation and Specifications
- 3. Maintainability Design and Work Flow
- 4. Clearance and Access
- 5. Lifting and Loading
- 6. Push, Pull, and Torque
- 7. Posture, Reach, Sitting, and Wrist
- 8. Hardware, Controls, and Displays
- 9. Grip, Dexterity, Tools, and Couplers
- 10. Repetition, Impact, and Vibration

Each chapter or group of related stressors was collected in sequential order within the checklist booklet. A table of contents or "Stressor Roadmap" page preceded the ten groups and served as a quick-reference guide to help the user find the appropriate chapter in the field. The "Roadmap" included large graphics, chapter headings, and large numbers identifying the locations of the ten groups. Large numbers in the headings of the checklist pages corresponded to the numbers in the "Roadmap". The ten groups were listed by order of appearance in a typical maintenance task, i.e., beginning with diagnosis and documentation and ending with fine motor-control activities and repetitive motions. Each group (except 3 and 5) was subdivided into blocks of like stressors. For instance, Group 1 (Diagnosis and Computer Interaction) had three blocks: Diagnosis, Input Devices, and Computer Interaction. Likewise, Group 7 comprised Posture, Sitting, Reach, Lying, and Wrist blocks. In addition to graphics, text-based descriptions were used for each item in the checklist. Not all stressors had their own graphic; several were shared.

The format of the checklist was designed for rapid recording of recognized stressors. Next to the figure/text descriptor, three check boxes of graduated size were used to capture the difficulty or severity of the stressor. Adjacent to the boxes, a line was provided for describing the problem or the step in the maintenance procedure. Following the line was a space for recording additional time spent on a task because of the ergonomic stressor. Following that line was a space for recording any potential errors that could result from the poorly designed task. Only errors of consequence were to be recorded. If an error had an obvious, immediate recovery path, it was not recorded. On the far right of the page three graduated-size boxes were available for recording the severity of the consequence of the potential error. The draft checklist was reviewed with the PTAB in May 1997 and revised before field use.

A cover page containing questions about the task and session was used to document the following data provided by the maintenance technician:

- 1. Frequency of task
- 2. Typical duration
- 3. Task segment duration
- 4. Time pressure (5-point scale)
- 5. Prior training on task
- 6. Person providing training
- 7. Times task performed
- 8. Most recent task performance
- 9. Ideas for task improvement

The following session information was provided by the ergonomist on the cover page:

- 1. Observer
- 2. Machine
- 3. Task performed
- 4. Unscheduled/scheduled maintenance
- 5. Auxiliary equipment needed/used
- 6. Maint. Techs—in-house vs. factory vs. contractor
- 7. Current shift hours
- 8. Session date
- 9. Session start time and end time
- 10. Task steps covered by checklist data

After all data were collected, the PTAB reviewed SEMaCheck again and suggested improvements based on field experience (see Appendix E). The version of SEMaCheck shown in Appendix F has been revised to address redundancies, omitted items, and difficulty in quickly accessing the correct pages in time-critical field observations. See the conclusions section for a more complete discussion of SEMaCheck performance and revisions.

5 RESULTS

Ergonomic stressor data were collected from all targeted machines, except the Genus implanter. Six ergonomists from the PTAB successfully observed maintenance tasks and recorded ergonomic stressors found in 28 different tasks associated with seven machines. The tasks shown in Table 3 were selected by maintenance technicians as the most difficult and were either directly observed or demonstrated in enough detail so that stressors could be identified.

The data in the raw form were checklists that had entries describing observations of stressors, complemented by two videotapes and 32 digital photographs. There were 250 observations over 28 tasks, averaging 8.9 stressors per task (see Appendix G for the complete data set). Potential errors were recorded for 49 of the observations, while 83 of the observations incurred additional time because of the stressor. Twenty-nine of the 250 observations had both additional time and potential errors associated with them. Ninety-seven of the 210 checklist items were used in

making observations. The average score for time stress was 2.5 on a 1–5 scale. All but three of the 28 tasks were performed by in-house technicians. The three exceptions were performed by factory technicians. Several of the observed stressors typical to the maintenance work are shown in Figure 1. The stressors of kneeling, limited accessibility, reaching, and lifting were major contributors to the data collected.

 Table 3
 Maintenance Tasks Observed

Tool	Observed Procedures		
1. Applied CVD 5000	Beam line PM		
	Clean Chamber		
	Remove extraction electrode PM		
2. Novellus Concept One Dep	Clean gate assembly valve		
	Scrub heater block		
	Rebuild spindle		
3. Varian Implanter V500	Replace air bearing		
	Beam dumpliner, scan deflector, dipole liner		
	Solenoid failure		
	Change-out manipulator		
	Post accel. Plate change		
	Remove source bushing PM		
	Remove/replace mass slit assembly		
	Change source		
4. Nikon Stepper	Particle on chuck		
	Clean & lube lead screws		
SVG Micrascan Stepper	14-day PM		
	Focus		
	Change lamp		
	Liftarm on longstroke and relay pack		
6. Eaton Implanter 200	Source, extractor exchange		
	Source housing PM		
	Semiannual PM		
	Post accel. Electrode		
	Ebara pump		
7. Applied Implanter 9500	Scrub MRS and source chamber		
	Remove/replace source		
	Remove/replace beam stop		

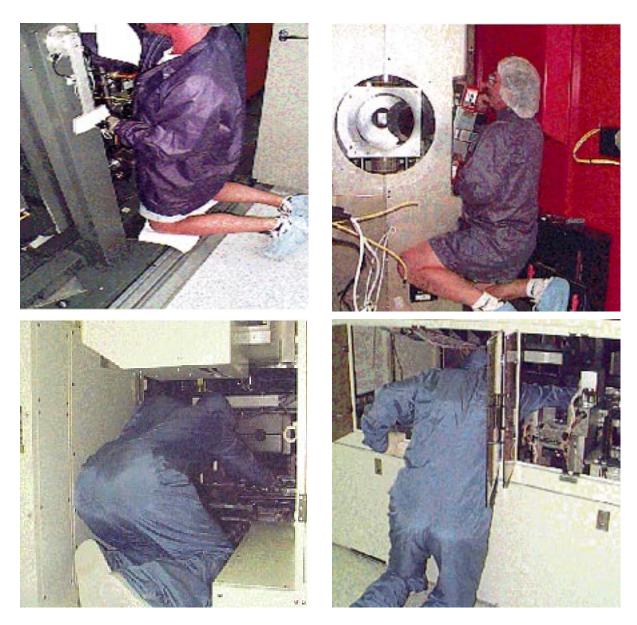


Figure 1 Examples of Typical Physical Stressors Experienced in Maintenance Tasks

5.1 The Most Significant Ergonomic Stressors

One way of assessing the most significant, or "worst" stressors, is to count the number of times the same stressor is observed over the 250 observations. Since the checklist includes groups (major categories or chapters of the checklist), blocks (subdivisions of the groups), and items (specific stressors), frequency analyses can be done for the three different levels of specificity. For example, the Pareto diagram in Figure 2 shows that the most frequently observed group was group 7—posture/reach. The next most frequently observed group was a tie between groups 4 and 5—clearance/access and lifting/loading. These three are followed by group 9—dexterity/tools, group 3—maintainability/work flow, and group 1—diagnosis/HCI (human-computer interaction). No observations were made in group 8.

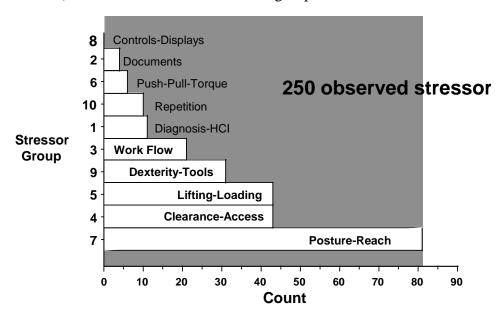


Figure 2 Pareto Diagram of Stressor Groups for All Observations

Another way of assessing worst stressors is by looking at those that can induce errors with significant consequences. Figure 3 is a Pareto diagram of the most frequent groups of stressors associated with the 49 error-likely observations. It should be noted that the top six groups are identical to those shown in Figure 1; however, the order differs slightly.

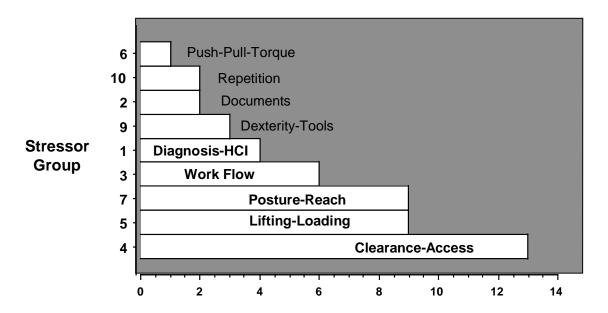


Figure 3 Pareto Diagram of Stressor Groups for Error-Likely Observations

Figure 4 shows an analysis by sub-groups or blocks. The blocks represent related sets of individual items. Twenty-seven of the 33 blocks were used in identifying stressors in the field. The top ten blocks are included in Figure 3. It should be noted that groups 3 and 5 consisted of only one block each (3–1 and 5–1).

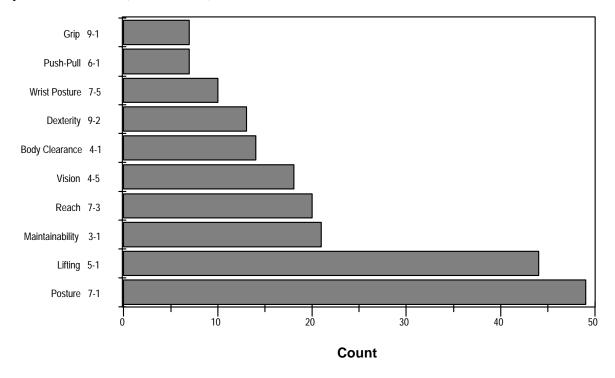


Figure 4 Pareto Diagram of Stressor Blocks

Figure 5 shows a similar Pareto diagram for the most frequently observed individual items. Here kneeling is the most frequent, followed by inadequate visual access, trunk flexion, and arm lifting.

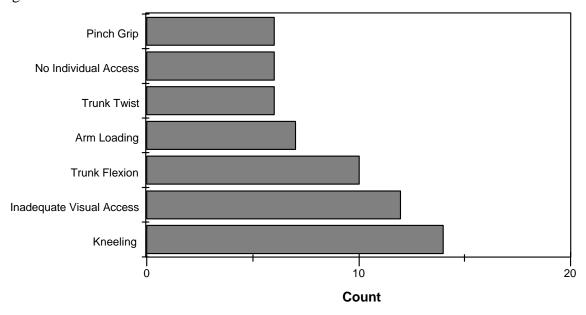


Figure 5 Pareto Diagram of Most Frequently Observed Items

Yet another way of assessing "worst" stressors is by the additional time they incur on maintenance tasks. The top individual-item stressors in terms of total additional time (multiple observations) are listed in Figure 6.

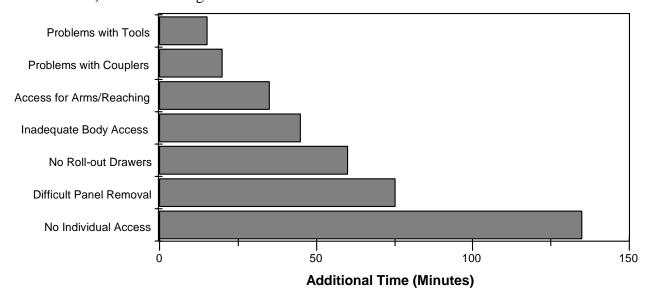


Figure 6 Pareto Diagram of Stressors Causing Most Additional Time

5.2 Combined Cost Scores

A review of the previous five analyses shows some overlap but does not clearly present a prioritized list of stressors. The order of the list changes based on the metric of interest and the interpretation of what is worse—frequency, additional time, or error potential. Because a single metric that can adequately characterize the overall negative impact on maintainability for each observation (data point) was needed, a combined score was developed for each observation based on multi-attribute utility theory. Human perceptions and decisions are usually based on the combination of several factors. The individual attributes, if measurable, can be combined in a mathematical formula to model the combination of perceived attributes. Each attribute, or factor, has a weight associated with it to represent its relative importance in the formula. This approach led to the development of a formula that combined the following attributes:

Machine Inclusion score—calculated earlier for each tool, based on availability, cost, complexity, and exposure (popularity). Tools with high inclusion scores are bottleneck tools that tend to be expensive, are difficult to repair, have a lot of down time, and are plentiful in the industry. Thus a high inclusion score points to tools that are costly and tend to hurt overall productivity.

Frequency of task—estimated metric collected from the maintenance technician while servicing the tool. It is also a measure of cost in that frequent repairs lead to higher cumulative downtimes.

Task difficulty—estimate of impact of the observed ergonomic stressor, also a measure of cost.

Additional time—estimate of additional time on task due to the stressor, also an obvious measure of cost.

Error consequence—damage done by making a potential error in the task due to ergonomic stressors, also a measure of cost.

These five attributes were converted into scaled factors and combined in a formula to represent the overall cost of each observed stressor. The formula, which was changed slightly at the final PTAB meeting to reflect improved relative weighting of the factors, is represented by Equation 2.

Cost score = (Inclusion score/250)(1 + freq./20)(difficulty)(1 + 30(add'1.time/nom.time))(1 + conseq./1.5)

Each of the five factors in Equation 2 was scaled based on perceived relative importance by the PTAB members. The inclusion score was scaled down to a 1 to 10 range to keep the cost scores less than 1000. The frequency factor was similarly constructed to handle a large range of raw data but also to generate a number between 1 and 10. The time factor was developed as a proportion of extra time over nominal task length to weight more heavily those tasks whose additional time was a significant portion of the entire task length. Difficulty did not need any alteration; however, the error consequence factor was perceived as less reliable and less important than the difficulty and time factors and hence its range was condensed. Table 4 lists the ranges of the numeric values for the raw data as collected in the field and the associated ranges of values for the resulting formula factors.

Data Min-Max Dependent Variable Factor Min-Max Inclusion score 292-1960 Inclusion score/250 1.17 - 7.84Frequency (per yr.) .5-1701+freq./20 1.02 - 9.5Difficulty 1 - 3Difficulty 1 - 3Additional time (min.) 0 - 1201+30(add'l.time/nom.time) 1-160-3Error consequence 1-31+conseq./1.5

Table 4 Ranges of Cost Score Formula Factors

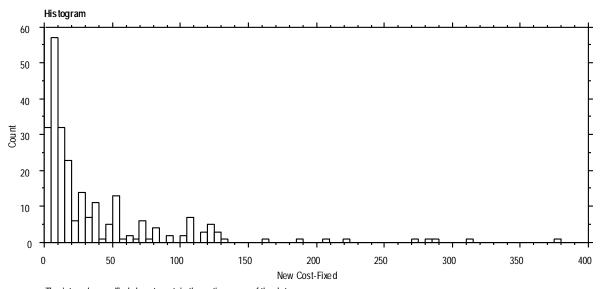

The cost score metric proved to be robust to minor changes in the factor weights. For instance, the original formula used Inclusion score/50 and a logarithmic factor of frequency because of a very large range in frequency data. When two data points were excluded at the final PTAB meeting because they were not tasks performed by maintenance personnel, the range of frequency data decreased dramatically and the frequency factor was changed to a linear factor. The pairwise correlation of cost scores for the 250 observations before and after the formula change was 0.89. Similarly, in an earlier modification of the formula, the inclusion score was removed completely and a correlation of 0.78 obtained. All the current factors have a minimal value of 1 or more and have monotonic, linear relationships with cost. A correlation matrix for the five cost score factors is shown in Table 5. The highest correlation coefficient is 0.264, indicating very little covariance among the five factors and ensuring that the cost score formula factors are metrics of different underlying dimensions.

Table 5 Correlation Matrix of Cost Score Factors

Correlation Matrix					
	Weighted Incl. Score	Freq.Factor	Diff Factor	Time Factor	Conseq Factor
Weighted Incl. Score	1.000	.041	.116	.102	134
Freq. Factor	.041	1.000	.013	081	124
Diff Factor	.116	013	1.000	.144	.066
Time Factor	.102	081	.144	1.000	.264
Conseq Factor	134	124	.066	.264	1.000

250 observations were used in this computation.

The cost scores calculated for the 250 observed stressors ranged from 1.197 to 746.928; they are plotted as a frequency distribution in Figure 7 (scores above 400 are not shown). The mean score was 43.11, and the distribution was highly skewed in the positive direction.

The intervals specified do not contain the entire range of the data.

Figure 7 Frequency Distribution of 250 Cost Scores

Top Ten Ergonomic Stressors The cost scores were analyzed by checklist items, summing the scores of identical items. The process yielded a ranked list of the 97 items by summed cost scores. Looking at the top 25 items, similar items were combined to construct a list of the top ten stressors (see Table 6).

Table 6 **Top Ten Ergonomic Stressors**

Ergonomic Stressor	Number	Sum Score
1. Difficult panel removal	5	1474
2. Kneeling, standing, legs bent	33	1182
3. Arm lifting, one and two arms	12	1028
4. Reaches, over shoulder, etc.	16	977
5. Difficult component access	8	813
6. Poor body access, trunk twist/flex	20	727
7. Inadequate visual access/lighting	17	714
8. Inadequate arm/hand/finger access	7	613
9. Two-person lifting, no weight labels	9	279
10. Pinch grip, small objects	6	236
Totals	133	8043

There was some concern that the top ten represented only a small portion of the entire set of stressors. However, the sum of cost scores for the top ten combined list is 8043, representing 75% of the grand total of cost scores (10777) as indicated in Figure 8. The 133 observations

represented in the top ten combined list represent 53% of the total 250 observations, as shown in Figure 9.

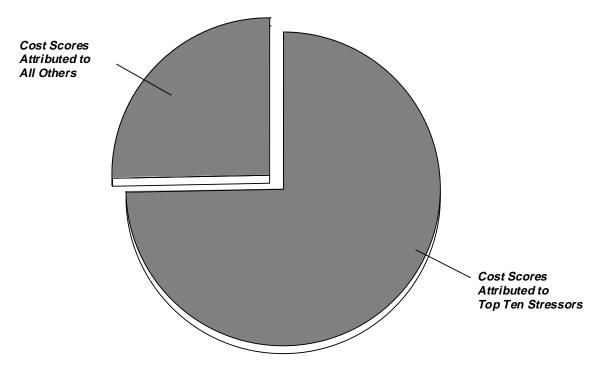


Figure 8 Cost Scores Attributed to Top Ten Stressors

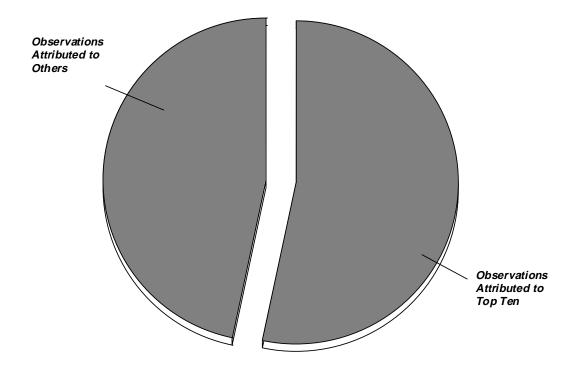


Figure 9 Observations Attributed to Top Ten Stressors

5.3 Worst Tools

Another analysis of the cost scores can reveal which tools (or types of tools) seem to have more severe maintenance-related stressors than others. Because the number of tasks sampled per tool was not controlled and the exposure to observations of stressors differed across the tools, the sum of scores is not a fair metric of comparison. However, a look at mean cost scores for all of the observations on any given tool or tool type yields some differences. Figure 10 lists the mean cost and number of observed stressors for the seven tools. Notice that the Applied 5000 CVD had the highest mean score at 103, with the Nikon steppers second at 82. The tool with the most observations was the Applied 9500 implanter with 75, observed over only three tasks. However the ergonomist collecting the data on the 9500 did not rate the stressors as costly as most of his colleagues. Table 7 lists the mean cost scores by PTAB member. Note that observer 2, who made the observations on the 9500 had the most number of observations, but by far the lowest mean score per observation. Observer 6, on the other hand, had the highest mean score at 106.9. The differences across PTAB members' cost scores are obviously significant, indicating large variability in using the various data provisions in the checklist. Table 8 lists the machine scores split by PTAB member-observer. Except for observer 2, there does not appear to be any strong consistencies in PTAB scoring behavior across machines, lending some credibility to the notion that differences found across machines are due to design and are not an artifact of the observers' individual scoring styles.

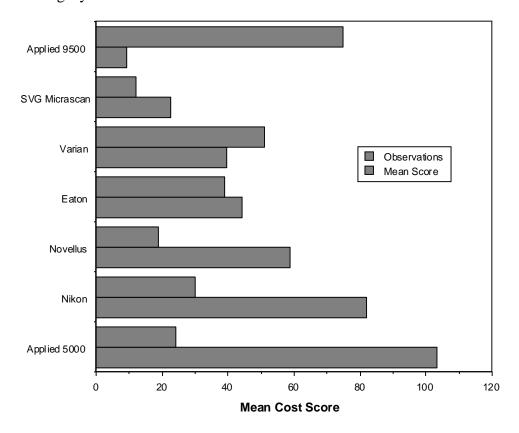


Figure 10 Mean Cost Scores and Number of Observed Stressors for the Seven Machines

Table 7 Mean Cost Scores by PTAB Member

	Mean	Std. Dev.	Std. Error	Count	Minimum	Maximum	# Missing
Cost Score, Total	43.111	79.465	5.026	250	1.197	746.928	0
Cost Score, 1	45.186	49.522	7.004	50	6.246	289.766	0
Cost Score, 2	9.114	9.298	1.1015	84	1.197	52.034	0
Cost Score, 3	48.018	105.968	14.161	56	1.901	746.928	0
Cost Score, 4	77.858	165.311	47.721	12	18.739	602.112	0
Cost Score, 5	76.527	69.048	12.020	33	3.802	273.715	0
Cost Score, 6	106.938	107.950	27.873	15	34.496	379.456	0

Table 8 Mean Cost Scores Split by Observer and Machine

	Mean	Std. Dev.	Std. Error	Count	Minimum	Maximum	# Missing
Cost Score, Total	43.111	79.465	5.026	250	1.197	746.928	0
Cost Score, 1, MICR	64.480	47.250	27.280	3	37.200	119.040	0
Cost Score, 1, NOV	58.922	67.423	15.468	19	11.544	289.766	0
Cost Score, 1, VAR	33.799	30.760	5.813	28	6.246	124.28	0
Cost Score, 2, 9500	9.190	9.812	1.133	75	1.197	52.034	0
Cost Score, 2, MICR	8.480	2.427	.809	9	6.000	11.520	0
Cost Score, 3, EAT	8.700	9.075	1.780	26	1.901	48.470	0
Cost Score, 3, NIK	82.093	136.524	24.926	30	8.611	746.928	0
Cost Score, 4, CVD	97.564	189.283	63.094	9	25.088	602.112	0
Cost Score, 4, VAR	18.739	0.000	0.000	3	18.879	18.739	0
Cost Score, 5, EAT	115.583	70.795	19.635	13	3.802	273.715	0
Cost Score, 5, VAR	51.140	56.055	12.534	20	4.294	221.357	0
Cost Score, 6, CVD	106.938	107.950	27.873	15	34.496	379.456	0

Looking at cost scores grouped across the three different types of machines—deposition tools, implanters, and steppers—although the implanters had by far the highest number of stressors at 165, the deposition tools had the highest mean cost score (see Table 9). Implanters were second highest, with steppers having the lowest overall cost scores, on the average.

Table 9 Mean Cost Scores by Machine Type

	Mean	Std. Dev.	Std. Error	Count	Minimum	Maximum	# Missing
Cost Score, Total	43.111	79.465	5.026	250	1.197	746.928	0
Cost Score, DEP	83.759	114.756	17.500	43	11.544	602.112	0
Cost Score, IMPL	26.930	42.929	3.342	165	1.197	273.715	0
Cost Score, STEP	65.061	119.200	18.393	42	6.000	746.928	0

5.4 Worst Stressors for Each Tool Type

Another analysis of the cost scores partitioned the scores by blocks of stressor items within tool type. A finer-grained analysis of individual stressor items is not realistic because of the paucity of data points within each stressor item. Therefore, the five blocks containing the highest sums of cost scores for the deposition, implant, and stepper tools are shown in Table 10.

Table 10 Inglest Cost Stressor Blocks for Each 1001 Type					
	Block Title	Block #	Sum	Obs.	
Deposition	Maintainability/Work flow	3–1	774.6	3	
	Reach	7–3	408.9	4	
	Couplers	9–4	379.5	1	
	Lifting/Loading	5–1	318.2	9	
	Posture	7–1	316.6	6	
Implanters	Lifting/Loading	5–1	1051.9	34	
	Maintainability/Work flow	3–1	906.7	13	
	Posture	7–1	569.7	27	
	Reach	7–3	366.7	11	
	Body access	4–1	291.8	10	
Steppers	Maintainability/Work flow	3–1	912.1	5	
	Posture	7–1	625.5	16	
	Vision	4–5	331.0	5	
	Arm access	4–2	284.1	1	
	Body access	4–1	251.6	3	

Table 10 Highest Cost Stressor Blocks for Each Tool Type

5.5 Additional Time

Additional time on tasks was estimated for each observed stressor. Only 82 of the 250 observations included a non-zero additional time; however, they summed to 777 additional minutes overall. When computed as a proportion of additional time over nominal task length, a rough measure of additional time caused by ergonomic stressors can be estimated (Equation 3). There were 28 tasks whose nominal task lengths (as estimated by the maintenance technicians doing the work) summed to 2924 minutes.

Equation 3:
$$777/2924 \times 100 = 26.6\%$$

Looking at individual machines, the Nikon had the highest percentage of additional time at 53%, while the SVG Micrascan had the lowest at 1%. Table 11 lists the additional time, nominal task length, and percentage of time wasted data for the seven machines studied.

Machine Add'l (min) Task (min) Percent Applied 9500 63 210 30% Applied 5000 80 180 44% Eaton 235 510 46% SVG Micrascan 4 410 1% Nikon 37 70 53% Novellus 62 196 32% Varian 296 1348 22%

Table 11 Overall Percentage of Time Wasted for Each Machine Studied

Table 12 shows percentages when machines are grouped by machine type.

Machine Type	Add'l (min)	Task (min)	Percent
Deposition	142	376	37.8%
Implanter	594	2068	28.7%
Stepper	41	480	8.5%

Table 12 Overall Percentage of Time Wasted by Tool Type

5.6 Recommend Solutions to Stressors

Several labeled blanks in the checklist provided space for the ergonomist-observer to write in potential solutions to the ergonomic stressor. Appendix H lists the solutions by machine and task/task segment. The PTAB also constructed a list of solutions to the top ten stressors at the final PTAB meeting (see Appendix I).

Return on investment (ROI) is the product of decrease in cost of ownership multiplied by the number of wafers affected, divided by the cost of the upgrade, as shown in Equation 4.

Equation 4: ROI =
$$\Delta$$
COO (Σ wafers)/Cost of upgrade

Although the numbers to calculate ROI were unavailable, relative costs and relative positive impacts of the solutions can be estimated from which to develop solution strategies. The list of solutions in Appendix I, when considered as individual solutions, can be used as input to an optimization algorithm for determining the best sets of solutions for various levels of spending. Other inputs include weighting by stressor sum scores (1474-236), subjective estimates of relative benefits (1-10), and estimates of relative cost (1-10). Some logical operations obtained in the analysis prevent illogical combinations of solutions, such as eliminating fasteners and designing captive fasteners to improve enclosure panel removal. The results of the optimizations are shown below. The assumed total capital for spending was 153 points, the total of the solution costs. Each optimization analysis takes a fraction of that number as the spending limit, and the algorithm selects the most advantageous set of solutions that in combination can be afforded within that spending limit. For instance, the best set of solutions for a spending limit of 30%, or 50 points, is shown in Table 13. Additional solution sets are broken out by spending limits

ranging from 20 to 70 points in Appendix J. The solutions and their relevance to a strategy to overcome the stressors found in maintenance tasks are discussed the conclusions section.

Table 13 Optimal Solution Set for Budget of One-Third of Total Cost

Stressor	Solutions
1. Difficult Panel Removal	Eliminate fasteners, use snap fit or hanging panels
	Use lighter panels and add handles in appropriate locations for lifting
	User provides storage space for removed panels somewhere near the equipment
2. Kneeling, standing with legs bent	Use fatigue mats inside enclosures
	Provide folding stools or sit-stand supports
3. Arm lifting	Improve body access so that lifts are closer to torso
	Use guide-locating devices such as pins to help locate and support components while fastening
	Provide supports or hoists for parts over 50 #
4. Long reaches	Provide light extension handles for tools
5. Poor component access	Enlarge footprint conservatively and strategically to increase body access space within enclosure
6. Awkward postures	
7. Poor visual access	Increase local illumination to 100 ftc.
	Increase access openings in bulkheads
	Use captive fasteners on parts difficult to see
8. Poor arm, hand, or finger access	Enlarge access ports in panels and bulkheads
	Provide special tools to reach into tight quarters
9. Heavy lifting	Provide handles for two-person lifts
10. Pinch grip, small objects	Provide tools with larger diameter handles

5.7 Checklist Revisions

After data collection was complete, the PTAB reviewed SEMaCheck again, based on field experience. The version of SEMaCheck shown in Appendix F has been revised to address redundancies, omitted items, and difficulty in quickly accessing the correct pages in time-critical field observations. The most significant improvement was the addition of data-recording or response lines in the "Stressor Roadmap" section, now two pages long. The design now allows using only the roadmap section in the field and completing the detailed stressor identification afterwards. This will reduce page-flipping to a minimum. The intended use is as follows: First, the observer becomes familiar with the kinds of stressors enumerated in the reference section at the back of the checklist. Then, in the field, task information on the first page is filled in using information gathered from the maintenance technician who knows the task. Third, the task is observed and the response lines are filled out according to the instructions at the front of the

checklist. Later, in the observer's office, the described stressors are looked up in the reference section and identified by stressor code numbers. If no corresponding stressor code exists, the apparent stressor can be dropped or it can remain a write-in.

In addition, the following improvements were made:

- 1. Instructions are included under the first response line on each page.
- 2. Previously redundant stressors now appear in only one location.
- 3. Response-line data field labels were updated to be more descriptive.
- 4. More figures were used in the roadmap.
- 5. More stressor category names were used in the roadmap.
- 6. A landscape page layout was used to lengthen the response lines.
- 7. "Minutes" was added to the clock in the response line for clarity.
- 8. Navigation graphics were added to the bottom of each page of the reference section to help users find their way to different sections.
- 9. Stressor descriptions in the reference section were clarified.
- 10. An explanation of a modified cost score formula was added so that users could calculate relative scores for the various observed stressors.
- 11. Since the response lines are limited to the first two pages, the overall checklist length was shortened from 17 to 12 pages.
- 12. Write-in items from this study were added to the list of stressors.
- 13. Landscape page layout was used in the reference section for consistency.
- 14. The task information header page was reworked for consistency.
- 15. A title page was added.

An instructions page was added for users downloading SEMaCheck.

6 CONCLUSIONS

6.1 Were the Methods Effective?

The contributions of member company ergonomists in this study proved very effective. They observed tasks that an outsider probably could not have. They also could protect the member company's interests during information exchange. The observation protocol worked well, and the revised checklist should improve observations significantly. Digital photos and video tapes of portions of the tasks also helped elucidate what work was being performed and what stressors were taking their toll on that work. These tools should be used to complement future uses of the checklist. Results can be difficult to interpret. A cost score that combined the data in ways that were meaningful was used. Future investigators can develop their own weighting schemes and evaluation metrics based on their particular interests and goals.

6.2 Generalizing to Other Process Tools

The collected data reflect maintenance problems within a small subset of front-end processing machines. Care should be taken in extrapolating the findings to fab machines in general. The

machines and tasks chosen for study were worst-case bottlenecks and the least favored maintenance tasks. It was known that these machines and tasks had problems. The study explored the magnitude of the problems to see if they had significant impacts on productivity. Another approach could have been to randomly survey maintenance tasks for ergonomic stressors; those results would have been representative of fab machines in general. Nevertheless, the approach used herein has proven successful and would be advisable for any member company intent on looking for the critical maintenance problems that need solving.

6.3 Industry Use of SEMaCheck

It is hoped that the current form of SEMaCheck can be used by people with no formal training in ergonomics. However, for best results, SEMaCheck should be used by ergonomists, industrial engineers, or safety/health workers with some ergonomics training or experience. SEMaCheck should be implemented in software so that observers can use a portable computer to document ergonomic stressors in maintenance tasks. That would necessitate customization based on the technology chosen. Features such as automated computation of cost scores and automated optimization of solution strategies would make SEMaCheck an extremely useful tool. SEMaCheck can be used as a design guide for engineers in supplier companies. Avoiding physical and cognitive stressors from the outset is the best way to improve efficiency of maintenance tasks and improve tool utilization.

The revised version of SEMaCheck is available on the world wide web for unlimited member company use. Since SNL holds the copyright for SEMaCheck, any modifications or other uses must be approved by SNL's legal department.

6.4 The Most Significant Stressors

The current study identified the most significant physical and cognitive ergonomic stressors associated with front-end tool maintenance, as shown in Table 6. The cost scores are the most reliable and robust measures of negative impact on operational effectiveness when compared to frequency, time, or error consequences. The cost scores reliably return the same set of top ten stressors (albeit in slightly different order), even when the weighting of the formula factors are manipulated or eliminated. The top ten stressors tend to address accessing components, lifting, reaching, assuming awkward postures while standing, and having poor visual access. These impediments to work appear to agree with more casual observations of fab maintenance procedures. The tools are typically built to take advantage of the smallest possible footprint and consequently pack as much as possible into a small space, leaving little room for a person to access to components. Items that were least frequently observed by the PTAB members were problems with documentation and poorly designed controls and displays. No observations of stressors in Group 8 (Controls and Displays) were recorded in this study. The fact that very few maintenance technicians use documentation after their first few experiences explains the first of these results. The fact that the PTAB members were corporate ergonomists, trained and experienced in looking for physical problems in the workplace, explains the second.

6.5 The Cost of Stressors

The cost of ergonomic stressors on productivity can be estimated by examining the COO equation and identifying the impacts on the individual factors within that equation (see Equation

5). For instance, anything that can reduce the factors in the numerator—i.e., fixed costs, recurring costs, and scrap product—can reduce the COO.

Equation 5: $COO = \Sigma \text{ fixed costs} + \Sigma \text{ recurring costs} + \text{scrap}$ lifetime x throughput rate x utilization x yield

Maintenance costs mostly affect the sum of recurring costs. However, when a tool is installed, the types of tasks that are performed are very similar, if not identical, to maintenance tasks. Therefore, benefits brought to recurring costs in the form of less time spent, fewer technicians needed, reduced opportunity for errors, etc. can be applied to the portion of fixed costs associated with tool installation. The scrap factor might be affected positively if reduced probability of errors in machine calibration helps to avoid processing wafers out of tolerance. But mostly, the recurring costs will be reduced with faster, more reliable maintenance tasks. How much? It is difficult to estimate. If maintenance work time is reduced significantly across the entire fab by 10 to 20%, fewer technicians may be needed per shift, thereby reducing labor costs proportionately. Another recurring cost that can affect the numerator is the cost of lost work days due to cumulative trauma disorders (CTDs) and loss of efficiency in performing maintenance tasks due to CTDs that are not severe enough to keep a worker home.

In the denominator of Equation 5, factors that can be increased will reduce COO. Tool lifetime, throughput rate, and yield remain all but unaffected by ease of maintenance. However, utilization can increase as a result of reduced maintenance time, especially for tools with low utilization. For instance if utilization for a tool is nominally 0.80, and maintenance time is reduced 25%, as suggested is possible from the results section, utilization can increase (1.0-.8) x .25 = .05, or 6%. If a tool with lower utilization, say 0.65, were to benefit from the kind of reductions in maintenance time possible found in the Applied 9500 and Eaton implanters, the increase in utilization can be substantial (1.0-.65) x .45 = .157 or 25%. A recent simulation using Two Cool software calculated the savings possible in a low pressure CVD tool with only 5 hours maintenance per week. The baseline calculation for COO was \$3.49 per wafer layer. With a 30% reduction in maintenance time, the COO was reduced to \$3.45. If the labor force were reduced by one maintenance technician, another \$0.05 was reduced, reducing the COO by a total of \$0.09. The nine-cent reduction multiplied by six layers and 20,000 wafers a month for 12 months adds up to \$129,600 per year or \$648,000 for five years. This is not an insignificant figure, when considered with the combined potential savings from multiple machines of the same type or other types of tools.

6.6 Solution Strategies

The best engineering solutions for reducing human-related maintenance problems are to reduce the need for maintenance, automate the maintenance with robotics, and use wholesale modular design. The solution strategies outlined in Appendix J (and Table 13) demonstrate how many of the recurring stressors observed in maintenance activities can be partially reduced or, in some cases, eliminated through more conventional, affordable engineering practices. Some of these solutions are admittedly "Band-Aids." Examples include using fatigue mats, providing hoists, and redesigning special tools used on the job. Others use sound engineering and are intended for major redesign cycles, such as using guide pins, roll-out chassis drawers, modular design, and hinged subassemblies. It is hoped that the suggested solutions are appropriate technologies for semiconductor manufacturing equipment.

The most advantageous engineering solutions are relatively inexpensive to implement, and they get results (see Appendix I). One is eliminating fasteners or using captive fasteners where applicable so that maintenance technicians do not need to handle or worry about losing nuts and washers. Others are redesigning panels to weigh less and providing convenient handles so that technicians can lift and carry them easily. Using guide-locating pins to help with mounting and dismounting heavy components or those needing alignment is a consistent winner in the optimization algorithm. One surprising result was the solution to conservatively and strategically enlarge the footprint to allow physical access to the interior of the tool enclosure. This, of course, must be weighed against the cost per square foot of clean fab space. Other add-on solutions such as increasing illumination, altering tooling, and adding fatigue mats, also present themselves frequently in the optimization results.

6.7 What Can Suppliers Do?

To help suppliers, machine-specific stressor data were culled out of the database. Narrative descriptions of the tasks observed, most prevalent stressors identified, and suggested solutions are collected in Appendix K. A more exhaustive list was sent to the appropriate representatives of the six supplier companies to alert them to design-for-maintainability issues.

Suppliers are encouraged to get data for design needs by talking to maintenance technicians and the design staff. Wherever factory maintenance technicians are employed, it is strongly advised that suppliers tap into their knowledge. Maintenance technicians can also be a good source of ideas on how to solve the problems. A visiting observer may be even more effective at discerning work-related stressors than the workers themselves, because the workers, being habituated to the stressors, may not usually perceive them as being unusual or unacceptable. SEMaCheck can be used as a baseline to establish criteria for stressors that can negatively affect maintenance efficiency.

6.8 What Can Users Do?

Most of the tasks observed in this study were performed by in-house maintenance technicians. This means that users have employees who can identify (perhaps with the help of SEMaCheck) inefficiencies in maintenance tasks caused by inadequate ergonomic design. In addition to increased machine utilization, workload and injury rates can be reduced by sound ergonomic design. Users' tool purchases are influenced by more than just economics; the long-term health and well-being of their maintenance technicians should also be a factor. SEMATECH's member companies can provide the necessary market pull to change the way processing tools are designed.

Currently, processing tools are designed for minimal footprint. Considering the extremely high cost of fab architecture, this seems reasonable. But have all of the real costs associated with compact footprints been accounted for? Many of the stressors observed in this study are directly related to or are artifacts of inadequate access to a tool's internal components. The economics of reducing the stressors through better design-for-maintainability have been demonstrated in section 6.2. The total costs of designing tools for minimal footprint should be subject to further study.

7 REFERENCES

- 1. Sanders, Mark S. and Ernest J. McCormick, *Human Factors in Engineering and Design*, New York, McGraw-Hill (1987).
- 2. Semiconductor Safety Association, SEMATECH Application Guide for S2-93 and S8-95
- 3. Swain, A.D. and Guttmann, H.E., *Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications*, NUREG/CR 1278, SAND80-0200, Washington, 1983
- 4. Miller, D. P. and H. O. Whitehurst, *Preventing User-Hostile Interfaces in IC-Fab Equipment: Ergonomic approaches for preventing ten frequent user-interface problems*, SEMATECH Technology Transfer #92091299A-ENG, November 1992.

APPENDIX A Literature SEARCH

Before the purpose of this study was refined, any documents addressing cleanroom ergonomics were of interest. The following conclusions were drawn from reading the documents listed below:

Summary Conclusions

- 1. Minienvironments are inherently cheaper than ballroom designs and can span several device generations. Operators can be in class 10,000 while product is in class 1. However, minienvironments need to be made user-friendly. They are also awkward to break down and clean
- 2. Particle counts are increased by loadlock doors, cassette rotation, distance from doors, and garments made with short fibers.
- 3. A disk-handling tool redesigned using TOME model reduced droppage, handling time, and wrist deviations.
- 4. Robotic systems can replace operators in handling heavy, expensive wafer cassettes.
- 5. Projection microscopes can be effective in visual inspection if designed well.
- 6. There are systematic techniques for evaluating production effectiveness of new fabs.

Literature Sources Consulted

Title: Designing a friendlier workplace through cleanroom ergonomics

Author: Scott, George L.

Corporate Source: Jacob's Engineering Group's, Portland, OR, USA

Source: Microcontamination v 13 n 1 Jan 1995. p. 5

Title: Norcross project. Investigating the relationship between ergonomic factors and particle addition in manual-access minienvironments

Author: Muller, P.; Silverman, S.; Bostwick, J.; Rothman, L.; Miller, R.J.; Wang, R.D.; Van

Sickle, P.M.; Tanaka, M.; Costa, J.

Corporate Source: IBM, Burlington, VT, USA

Source: Microcontamination v 12 n 10 Oct 1994. pp. 39-43

Title: Class 10 chair controls contamination, static in cleanroom operation

Author: Anon

Source: Microcontamination v 11 n 8 Aug 1993. p. 44

Title: Upgrading a Class 100 fab through use of manual-access microenvironments

Author: Grande, Wendy C.

Corporate Source: Northern Telecom

Source: Microcontamination v 11 n 1 Jan 1993. pp. 25-28, 63

Title: Minienvironments and Their Place in the Fab of the Future

Source: Solid State Technology September, 1993, p. 49

Title: Design and evaluation of an optical disk handling tool for a cleanroom environment

Author: Vora P V; Reynolds J L; Corl K G

Source: Applied Ergonomics, 1992, 23 (6) pp. 414-424

Title: How to design a validation program for cleanrooms

Author: Thibeault, Anita

Source: Medical device and diagnostic industry, v.17, n.5 May 1995, p. 6

Title: Effects of a visual task with cognitive demand on dynamic and steady-state accommodation.

Author: Iwasaki, T.

Source: Ophthalmic-&-Physiological-Optics, vol 13, no. 3, July 1993, pp. 285-90

Title: The model-E projection microscope-a tool for visual inspection of wafers in microelectronic circuit manufacture.

Au: Knupffer, H.; Bonnke, H. Source: Jena Review no. 2, pp. 66-9

Title: Impact of minienvironments of facilities cost

Author: Barnett, William; Schneider, R.K.

Source: Proc. of IEEE/CPMT Int'l Electronic Manuf. Tech. (IEMT) Symposium 1995, IEEE,

Piscataway, NJ 1995, pp. 286-291

Title: Intrabay automated material handling

Author: Pierce, Neal

Source: Proc. Inst. Envir. Sci. vol. 1 1993 pp. 529-537

Title: Studies on sizing and counting particulate contaminate in and on clean room garments

Author: Hayakawa, I. et al.

Source: 1985 Proc. 31st Annual Mtg. Inst. Envir. Sci. Improve your odds with sound basic

science and creative engineering.

APPENDIX B Data Collection Techniques

The following information was sent to PTAB members on March 10, 1997, before a teleconference to discuss how the data were to be collected.

Questionnaire—effective method for getting data from many people, can be anonymous, can be easy to score, has structural consistency, and open-ended questions can be used for workers to express difficulties.

Disadvantages—many people are Q'd out, which leads to bad attitudes, low return rates, sabotaged answers, etc. Also can't follow up for explanations unless you know who answered. Impersonal. Difficult to anticipate all possible responses, so can miss important information. Difficult to assure reliability in answers without rewording and repeating questions. Worst data in terms of validity.

Personal Interview—allows for more detailed explanations, no colleague bias or bandwagon effects, provides 2nd best data, task difficulties can be expressed by participant.

Disadvantages—not as consistent as Q, unless carefully scripted, time- inefficient, difficult to record/analyze data, can't be anonymous—social bias. A variation of this, called the 'Critical Incident Technique' was used by Engineering Psychologists in the mid-forties to identify ergonomics problems with flying aircraft during the war. The interviewer would ask "Tell me about some error or mistake you have made in using the ____ machine" and collect answers from several operators (pilots) to cross-validate. Advantages were getting right to the rough spots quickly, while disadvantages include forgetting, and having trouble combining data from several sources.

Focus Group Interview—typically held with 2-20 people, more time efficient than personal interview, general results available rapidly, lots of data can be recalled on specific issues, 3rd best data, task difficulties can be expressed by participants.

Disadvantages—more time consuming for participant than personal interview or Q, bandwagon effects (everyone chimes in with personal anecdote on an issue, making it difficult to assess its representativeness), no anonymity—social bias.

Direct Observation—best data of the bunch, because it's firsthand and does not need interpretation or communication to collector. Can collect data on virtually any aspect of the tasks. Many ergonomists attempt the tasks themselves to help identify problems for beginners.

Disadvantages—access to work area may be restricted, extremely time-intensive, work may be affected by observer's presence or interactions, difficult to collect all relevant data real-time (may have to resort to videotaping), difficult to anticipate all data that must be collected and create easy-to-use forms, may have to infer difficulty unless worker is primed to point out.

Types of Direct Observation:

Activity Sampling—at prescribed time intervals record activity in task. Yields % time doing various activities within task, but not sequence information, difficulty, location, or hazards.

Function Analysis—general term for several analyses, process analysis, flow charts of the sequential process of a task, including product operations, movements, storage, quality inspections, etc. Flow diagrams, operational sequence diagrams, timeline analysis w/Gantt charts.

Network Analysis—indicates relationships of system entities by time, distance, frequency, or importance. Includes critical path method, PERT, SAINT, link analysis - showing relative frequencies of movement or interaction.

Task Analysis—typically applied to one worker, TA breaks down a job or large task into smaller components and identifies skills and tools required, behavioral components, and in cases of reliability analyses, probabilities of human error.

Work Load Measurement & Analysis—probably not relevant to discussion, but it involves measuring expenditures, stresses, and strains on human physiology during work and designing tasks so as not to exceed prescribed fractions of total work capacities.

APPENDIX C Field Slides for Maintenance Staff Focus-Group Session

Project Structure

Project Managers
Lisa Pelc, SEMATECH
Dwight Miller, Sandia

Project Technical Advisory Board (PTAB)

Ergonomists from Member Companies:
Advanced Micro Devices - Carey Newton
Digital Equipment Corp. - Tom Sullivan
Hewlett Packard - Dana McKInney
IBM - Tod Pew
Lucent - Bob Guinter
Motorola - Jada Gray
National Semiconductor - Lisa Sisack

Texas Instruments - Ramon Nazarian

Sandia National Laboratories

Goals of Field Data Collection:

- to identify ergonomic stressors associated with preventive and unscheduled maintenance on pre-selected bottleneck machines via focus group discussions (this meeting)
- to <u>observe</u> and <u>document</u> identified stressors via interviews and field observation with maintenance technicians
- to solicit ideas for solutions to ergonomic stressors from maintenance technicians and discuss various preventive approaches to problems identified
- to relate stressors with increased errors or time in tasks and <u>associate</u> potential solutions with increased machine <u>utilization</u> and <u>productivity</u>

Ergonomic Stressors that Might Affect Productivity

<u>Physical</u> - heavy lifting, strenuous torquing, long reaches, prolonged awkward postures, pushing/pulling, stooping, pinch grips, overhead reaches, extremity or whole-body vibration, excessive repetitions or keyboard work, accessability to components,

Mental - poorly written procedures, hard to read displays, controls that are counter-compatible, tricky alignment, setting, or balancing tasks, difficult fault diagnosis, hard to remember task steps, things that are confusing, hard-to-use auxillary equipment

Sandia National Laboratories

We're Not Really Interested In:

Environmental Factors - noise, ambient lighting, air quality, chemical exposure, plant bulk supply hook-ups, gray area housekeeping, etc.

Safety Issues - warning labels, guards and shields, pinch points, robot arm dangers, heat/cold, radiation, lubricants, solvents, etc.

Clothing Issues - particle shields, booties, breathing apparatus, gloves, etc.

Organizational Factors - shift rotations, assignments, teamwork, training, communication with operators, time to arrive at machine, etc.

Think of Tasks That Have Any of These Characteristics:

*****Tedious,,,,,,

Difficult to Perform

^~! Stressful !@#

POORLY DESIGNED

LABORIOUS

?Konfuzing?

T.i.m.e......C.o.n.s.u.m.i.n.g....

Sandia National Laboratories

Focus Group Exercise

Think about both PM and Unscheduled Maintenance tasks with the <u>Applied Materials</u> 5500 Deposition Tool.

Given the criteria we talked about, which tasks are the best candidates for observation?

 _ o PM	o UM
 _ o PM	o UM
 _ o PM	o UM
 _ o PM	o UM
 _ o PM	o UM
o DM	o LIM

Prioritized List of Tasks

Using the list of tasks just developed, vote on the worst 3 tasks. The number of votes will determine the ranking of the tasks. The ranked list of maintenance operations on the Applied Materials 5500 Deposition tool are:

1		
3	 	

Sandia National Laboratories

Task Observations

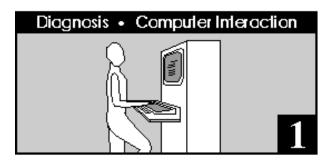
Thank you for your valuable inputs to our project. We will schedule field interviews/obervations with your management.

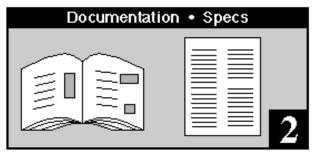
The field work will involve us going with you on chosen maintenance tasks, asking you questions about the tasks, and recording task information of checklists. Remember, we are intersted in what design features in the equipment and the operations make life difficult for you. We are not interested in assessing your performance.

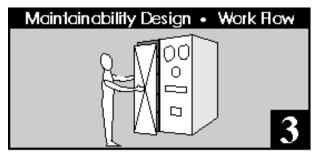
Please be as frank and honest as you can about task difficulties. The data we collect will probably be fed back to the designers and manufacturers of the equipment so that they can learn from their mistakes and design future equipment that is more maintainable.

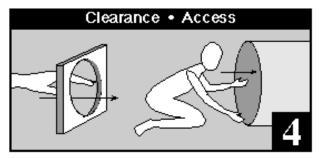
We thank you in advance for your cooperation.

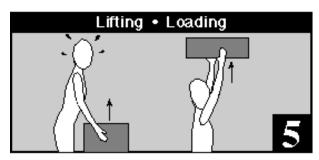
APPENDIX D Sandia Ergonomic Maintenance Checklist

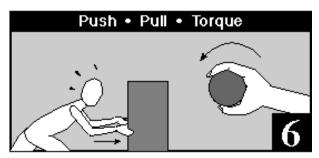

Questions for Maintenance Technician <u>prior to</u> field observations:

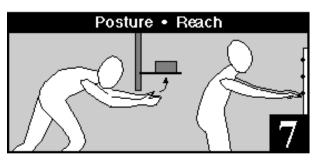

Task Information and Timing How often is this task performed on each machine? ____Times per_____ What is the typical duration of the entire task? ___ hrs.___min. What segment of the task will I be observing?_____ How long does this segment typically take to perform? ___ hrs.___min. Will you be under any time pressure to complete the task? None 1----- Some----- Moderate----- Considerable----- Severe **Experience** How much <u>training</u> did you get on this task?_____ Who performed the training?_____ <u>How many times</u> (total) have you performed this task?_____ When was the <u>last time</u> you performed this task?_____ Do you have any ideas on how to improve the task?_____ **Session Information:** Observer_____ Machine____ Task Performed_____ DM DUM Auxil. Equipment needed_____ Performed by: \square in-house tech.(s) \square contractor(s) \square factory rep.(s) **□** other _____ Current shift hours:_____ to ____ Today's date:_____

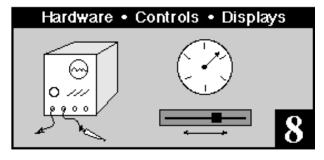

Session start time: _____ Session end time: _____

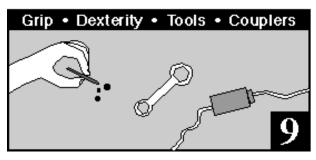

Checklist data covers <u>portion</u> of task, or <u>steps</u>:______

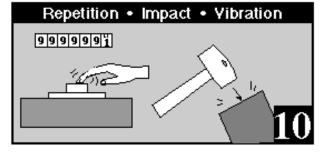

STRESSOR ROADMAP











1 a

DIAGNOSIS HUMAN-COMPUTER INTERACTION

1	a
---	---

	Diagnosis					
		DIFFICULTY	DESCRIPTION LOCATION	+(2)	ERROR POSSIBLE	CONSEQUENCE
	Must integrate in to from displays	·				
	Incomplete Info					
	Have to look up codes					
/ /	Must search for info					
	Automated diagnosis Is wrong					
$\mathbb{N} \subset$						
	Nustuse documents		Possible Soluti	on		
	Must use documents to diagnose					
٠ ، Ó	Must diagnose Without aids					
	Must perform tests to diagnose faults					
	· ——					
			Possible Solutio	-		
			Post Die Solutio	7N		
	Input Devices					
		DIFFC ULTY	DIBSCRIPTION LOCATION	+💬	ERROR POSSIBLE	CONSEQUENCE
<u>Keyboard</u>	Used as pointer	_				
-	Badlocation	_				
	Standinght <23°or≽40	·				
	Seated ht <24 °or>80°	.□□				
	Keys worn out	:U				
	Inappropriate for task					
	Force too sensitive	: □□□—				
	Force too stiff	·				
	Too much typing	□-				
		<u> </u>				
Pointing Device	Too sensitive	-n				
	Too coarse					
	Discontinuous control	_				
رکرا	Confusing buttons					
/	CTDIssue					
Touch Screen	Poor alignment					
	Multiple touches needed	·				
	Lightpen difficult to use	-DD_				

Possible Colution

— Use reverse side for notes —

1b DIAGNOSIS HUMAN-COMPUTER INTERACTION 1b

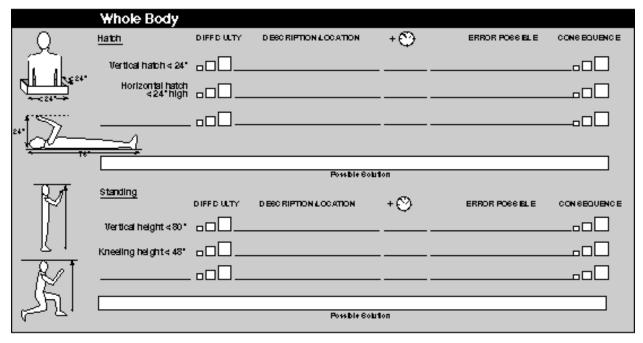
	Computer Interaction				
	Monitor DIFFC ULTY Mostly text	DESCRIPTION LOCATION Possible Solution	+ 😲	ERROR POSSIBLE	CON SEQUENCE
- ·	Feedback DIFFC ULTY Delayed feedback DIFFC ULTY Inappropriate feedback DIFFC ULTY Status into tor long tasks not shown DIFFC ULTY	D BSC RIPTION LOCATION Possible Solu		ERROR POSS BLE	CONSEQUENCE
	Screen Navigation severity No home key Number of menus/ steps > 3 to do task Machine status not displayed Machine status not displayed adequately monitor lower than 52' or higher than 53' lower than 37' stacted higher than 65'	LOCATION &TEP		ERROR POSSIBLE	P(ERROR)
		Possible Solut	on		
		LANDIN GARD			
<i>∨</i> 583 , ,	Color DIFFC ULTY Volates green- yellow ed coding DESCREEN Screens use bright DESCREEN multiple colors DESCREEN	DESCRIPTION LOCATION	+•	ERROR POSSIBLE	CON EBQUENCE
	Color contrast Insufficient for reading Monochrome - could use one color				
		Possible Sob	uton		

2				
Z	c	-	1	١
\sim		,	J	
	,	Z	9	١

DOCUMENTATION · SPECS

	Documentation				
?	DIFFICULTY	DESCRIPTION/LOCATION	+0	ERROR POSSIBLE	CONSEQUENCE
0 0	Not needed				
103	Hard to find data 🗆 🗆 🔝				
1	Reading level too high -				
	Hogical organization 🗆 🗆				
	Steps missing 🗆 🗆				
l l h	Repeated steps 🗆 🗆				
	Not enough illustrations				
	Print too small 🗆 🗆				
	Checklists not used				
	Multiple sources needed to do job a				
	Too big 🗆 🗆				
ا محمُم	1 Too heavy □□□				
	Specification/ tolerance not correct				
	Ranges not correct 🗆 🗆				
	Schematics too large				
	Busy schematics 🗆 🗆				
	Can't access document while doing task □ □ □				
29	¯				
7					
		Possible 5	Solution		

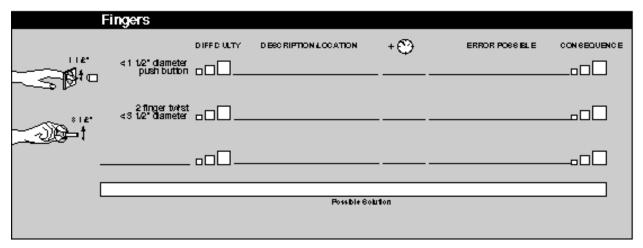
9	oftware-base	d Docume	entation			
			DESCRIPTION/LOCATION	·O	ERROR POSSIBLE	CONSEQUENCE
			Passible Sc	olution		

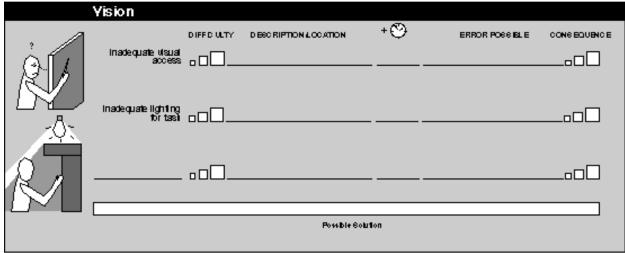

3 MAINTAINABILITY DESIGN · WORK FLOW 3

	Tool Not Desig	ned For I	Maintainability			
Barre		DIFFC ULTY	DIESC RIPTION LOCATION	+🕆	ERROR POSS ELE	CONSEQUENCE
	No individual access; have to move objects to gain access					
	Steps Hogical — Inefficient (vor til ov					
	No modular replacement	• - □_				
[99]	No roll out drawers	•• □				
	Drawers extend into alsies					
2	No quict-disconnects used					
	Difficult endosure panel removal					
	Work segment(s) done under time pressure					
	No documents used when needed (voluntary)	·-D_				
	Paper not allowed in tab	·				
	Restbreak(s) needed	·				
	Poor access to testpoints					
			Possible Sol	ution		

4. a

CLEARANCE · ACCESS


	Arms					
<24"		DIFFC ULTY	DISSURPTION LOCATION	+🟵	ERROR POSSIBLE	CONSBOUBNCE
	Both arms, 1 opening <24*					
	Diameter for elbow 45.0*					
	Diameter for shoulder < 45.7°					
(S. 7.	<u> </u>					
			Possible Solu	ı1on		


	Hands					
	Too tight for 2 hands	DIFFE ULTY	D BSC RIPTION LOCATION	+® 	ERROR POSSIBLE	CONSBOUBNCE
	Opening for open hand <2 "x4"					
	Opening for 1st <6"x6.7"					
77			Possible Sol	uton		

4 b

CLEARANCE · ACCESS

5

LIFTING . LOADING

	Lifting - Load	ling				
-îg		DIFFICULTY	DESCRIPTION LOCATION	+🗇	ERROR POSSIBLE	CONSEQUENCE
	Load > 35 lbs					
	Load > 15lbs, away from body or 04th no legs					
	Bernt back lift > 20 lbs					
	10 ∭if ∡boveshoulder ∭iftorload > 10 lbs					
	J Poorhandles, largeload ∩					
	Awtiward load, no handles					
	Nonsymmetrical, off-axis or twist with load > 10 ibs					
	Startpoint below iness, load > 25 lbs	·				
Ren	Armsonly lift > 10 lbs					
	One arm lift > 6 lbs	·				
	Two-person lift \$55 lbs					00
	Weights not labeled on heavy objects	·				□
	Limited headroom					
8	One-armed lift, away from body > 10 lbs	•••—				
	One-armed lift, close to body> 45 lbs	•••—				
L						
			Possible 6	olution		

6

PUSH · PULL · TORQUE

	Push - Pull					
		DIFFO ULTY	DESCRIPTION LOCATION	+🕎	ERROR POSSIBLE	CONSEQUENCE
	Two hands, no shoulders > 9 lbs					
(Š)						
T.	Two hands, shoulder, back > 50 lbs					
	Whole body with footbrace> 100 lbs					
:0 r-1						
	One hand push or pull > 20 lbs					
	Push, I ying down two arms, > 50 lbs					
-الحن:	<u></u> 1					
200	Push, I ying down one ami, > 20 lbs					
سلحن:	⊒Ĵ Pull, lying face					
	down, onearm, ⇒17lbs					
1 11/100	Pull, lying sideways one aim. > 12 ibs or					
	Pull, lying sideways one arm, > 12 ibs or > 17 ibs i fusing two arms					
	_					
			Possible 8a	uton		
	Torque					
$\overline{\sim}$	Torque	DIFFID ULTY	DESCRIPTION LOCATION	+ (2)	ERROR POSSIBLE	CONSEQUENCE
	One hand > 15 ft lbs					
0~~	W 15 #150					
- ~	À} Arm > 15 ftlbs:					
Restance of	رسر(Body> 40ftlbs					
\U\		U_				
			Possible 80	olu1on		

7_a posture • sitting • reach • wrist 7_a

Posture					
20° Al	OUNTDURATION	DESCRIPTION LOCATION	+💝	ERROR POSSIBLE	CONSEQUENCE
Nect 1 exton > 20	·				
Any Neot extension					
_, 4 , 3	•				
Nect twist> 45	·				
Trunt flexion > 20					
Truntiside bending > 20					
Static standing posture > 45 min	<u>.</u>				
Truni twist> 20					
Feetlegs unever					
Feetlers bent supportingbody ince> 1 min					
FeetNegs Innel croud					
	U				
		Possible Solu	1on		

	Sitting					
	Toolow	DIFFC ULTY	DESCRIPTION LOCATION	+💝	ERROR POSSIBLE	CON 880UBNCE
	No bacilrest	•• •				0
Br.	State sitting > 1 hr.					
	No cushion	•• •				0
4	Stool with no footring					
2_1	Sitting on 100r					
		·				
			Possible 6	iolu1on		

7 b POSTURE · SITTING · REACH · WRIST 7 b

Reach					
0	DIFFICULTY	DESCRIPTION LOCATION	+🗇	ERROR POSSELE	CONSBOUBNCE
Arms > 20" extension					
Reach over shoulder					
Reach overhead					
React/vgrasp male, 18*					
Reach 2 arms > 15*					
Reach below sub flooring					
		Possible Colu	ı1on		

Lying				
Ly(ing on floor (bact)	DESCRIPTION LOCATION	+®	ERROR POSSIBLE	
Lyling on floor (side)				
Lylingon floor (side) on elbow				
	Powble 60			

,	Wrist					
>25°		6 EVERITY	LOCATION STEP	+🟵	ERROR POSSIBLE	P(ERROR)
£2	Prolonged extension	U				
Z >25.	Prolonged flexion					0
(1)	Prolonged auptn ation					0
│ . <u>≗</u> . ♣	Prolonged pronution					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prolonged ulner/ redial deviation					
20. [

8 H	ARDWARE •	CONTROL	_S · I	DISPLAYS	8
	Controls				
← •	DIFF <u>C</u> ULTY	DESCRIPTION LOCATION	+()	ERROR POSSIBLE	CONSEQUENCE
	High resistance 🗖 🔲				
	Dosmali□□				
l (C	Poor labeling □□□□				
1,5	Poorlylocated □□□□				
	Missing warnings 🗆 🔲 💹				
	T00 00 at 50 🗆 🔲 💹				
	Unstable set point 🗆 🔲 💹				
	Little dearance				
		Possible 6	iolu1ion		
	Displays				
(Serving)	DIFFC ULTY	DESCRIPTION LOCATION	+(3)	ERROR POSSIBLE	CONSEQUENCE
	Normal operation range-traution.ttm ger		~		_
	notehown 🗆 🗆 🔻 🔻				
77770	Green/yellowfed color coding ulolated				
Gr ZAII	Digital, butneed analog D				
	Analog but need digital p				
	Can tread because of:				0UU
- T	Glare				
(* `)	Shedove 🗆 🗆 💷				
	Small numberal/ettera 🛮 🔲 🔙				
?^	Badangle 🛮 🔲 🔙				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	Auditor y Dieple ye				
1 11	Not distinguishable				
	Alarm defeatable				
	Not used as verning				
A 11.					
	700 ao ft 🗆 🗀 🗀				
	100 loud				
0 (0					
		Possible 6	olution		
	oush Buttons				
	PUSTI BULLOTIS DIFFOLLTY	DESCRIPTION LOCATION	+®	ERROR POSSIBLE	CONSEQUENCE
< ₩ >	Too amali for linger				
	Registance too great 🗆 🗆 🗆				
	Emergency OFF				
	Emergency OFF				
(Eoc)	lowresistance 🗆 🗆 🗆				
	Poor location 🗆 🗆 🗆				□ -
					<u> </u>
		Boss Ma O	.hd.n		

$\mathbf{9}_{\mathbf{a}}$ GRIP • DEXTERITY • TOOLS COUPLERS $\mathbf{9}_{\mathbf{a}}$

Grip			
Pendi, Test Leads, Fasteners, Paper DIFFC ULTY DESCRIPTION LOCATION	+🗇	ERROR POSSIBLE	CONSEQUENCE
Object = 1*, frequent or high force			
Twist Small Knob With Fingers Frequently p			
High torque □□□			
Poor coupling/ smooth surface 🗆 🗆			
Possbi	+ Bolution		

	Dexterity				
~~	DIFFC ULTY	DESCRIPTION LOCATION	+🟵	ERROR POSSIBLE	CONSEQUENCE
\Q).	Piciting up small objects o				
93 J. r.	Manipulating small p				
شخص	Fitting small objects □□□				
سے جہ	Tiny tools needed 🛮 🔲 💹				
	Frequent vused fastehers are not captive o				
(•					
2/4		Possible	Bolution		

	Tools				
ص	DIFFC ULTY	DESCRIPTION LOCATION	+©	ERROR POSS BLE	CONSBOUBNCE
	Handles too narrow:				
	∏∏] Tipswrongsize or Shape □ □ □ □				
	Inappropriate tool for measuring p				
	Special tools required				
	Design does not minimize number tools needed p				
		Describle On	lui a	_	
		Possible 80	поп		

9 b GRIP · DEXTERITY · TOOLS COUPLERS 9 b

	Couplers				
	S Difficultypulling apart	DESCRIPTION LOCATION	+ ©	ERROR POSSIBLE	CONSBOUBNCE
' 44	Dificultyjoining manually				
	Coupler cambe Inverted				
	Tool needed to join coupler ⇒				
5					
		Possible 60	olution		

Handles					
	DIFFICULTY	DESCRIPTION LOCATION	+0	ERROR POSSIBLE	CONSEQUENCE
SA** to 11/2* in diameter					
Length < 5.0°					
Clearance < 2*					
		Possible Sol	uton		

$10~\mathrm{a}$ REPETITION \cdot IMPACT \cdot VIBRATION

10	a
-----------	---

	Finger Only					
		DIFFICULTY	DESCRIPTION LOCATION	+ 💬	ERROR POSSIBLE	CONSEQUENCE
€	Lowforce≥35 reps/min.					
	Medium force ≥ 20 reps/min.					
	High force≥10 reps/min.					
		·				
			Possible 6	olution		

	Hand/Wrist To	rque				
		DIFFICULTY	DESCRIPTION LOCATION	+ 💬	ERROR POSS BLE	CONSEQUENCE
	Lovvforde ≥ 86 repsumin.					
	Medium force≥20 reps/min.					
	High force≥ 10 reps/min.					
			Possible 60	lution		

	Arm Repetitio	n				
100		DIFFO ULTY	DESCRIPTION LOCATION	+ 🗇	ERROR POSSIBLE	CONSEQUENCE
1	Lowforce≥ 20 reps/min.				,	
	Medium force≥ 10 reps/min.	000_				
Re	High force≥5 reps/min. 7.					
	Frequency is \$15 min.					
		000_				
			Possbie Soi	luton		
			LAMBIE ON	I LONG TO STATE OF THE STATE OF		

:	Shoulder Rep	etitio n				
		DIFFC ULTY	DESCRIPTION LOCATION	+🗇	ERROR POSSIBLE	CONSEQUENCE
رند	Lowforce≥ 15 reps/min.					
	Medium force≥7 reps/min.	·				
	High force≥S reps/min.					
			Possible Sc	olution		

10 b REPETITION · IMPACT · VIBRATION

	Arm/Hand Yibration							
<u>Hammer</u>	DIFFC ULTY	D BSC RIPTION LOCATION	+0	ERROR POSSIBLE	CONSEQUENCE			
	Small Hammer & Fasteners							
1	Frequentuse a 🗆 🗆 📖							
J. L	Large Hammer —ImpactTools							
1	Frequentuse 🛮 🗆 🔝							
	Large hammer to Move Heavy Object							
	Frequentuse 🛮 🗆 🔝							
Q DA								
	Hand used as hammer 🗖 🗆 🔝							
	Possible Solution							

	Yibration				
Power Tools	DIFFC ULTY	DESCRIPTION LOCATION	+\$	ERROR POSSIBLE	CON SBOUBNCE
	Used < 16 min. □ □ □				
ŀŀr	Used > 16 min				
		Possible (Bolution .		

APPENDIX E PTAB Suggestions For Checklist Revision

	Problem	Suggested Solution	Implementation
1.	Too long for field use	Write as one or two pages to eliminate flipping through numerous pages, keep detailed stressor lists, but as more a reference section	First two pages only have fill-in forms, only one page turn is necessary
2.	Consequence and difficulty need to be defined	Include damage and injury within consequence, break out cognitive and physical difficulty, include small timelines for each	Instructions are included, on the data pages are response fields with all fill-in items defined
3.	Cognitive and hardware stressors were not used	Keep in checklist as memory joggers	Those sections were retained for future use
4.	Make more user- friendly	Add a method to quantify the data—prioritize time, injury potential, etc.	Cost score formula is explained in instructions
5.	Users unsure about how to develop solutions	Add a place to check where in process stressor occurred	Data field in checklist was relabeled
6.	Field and design requirements are different	Make two checklists—one for field with 1–2 pages, and one for detailed analysis like original	Fill-in forms are followed by reference section w/detailed stressors and ID codes
7.	Checklist is not readily available	Make available to all member companies, provide computerized version for use in paperless fabs	Will be made available on WWW, no funding exists for computerized version at this time

APPENDIX F Revised SEMaCheck

Sandia Ergonomic Maintenance Checklist

Developed for SEMATECH by

© 1998 Sandia National Loboratories

1998 Sandia National Laboratories SEMaCheck Instructions

- 1. Copy pages 3, 4, and 5 as necessary for collecting data on different tasks, one set for each maintenance task or sub-task.
- 2. Study the reference section, pages 6-15, to become familiar with the types of stressors to be recorded during the observation period. Add any you think are missing. If you do not understand any of the stressors, consult a specialist with human factors or ergonomics training.
- 3. Fill out page 3 with information obtained from the maintenance technician prior to starting the task.
- 4. Fill out pages 4 and 5 as work progresses. Record only significant physical or cognitive stressors, encountered by the technician that negatively impact the efficiency of performing the task--increase the time taken, increase chances for mistakes, increase risks to equipment or for injury.
- 5. Follow the instructions under the first data line on pages 4 and 5, which are elaborated on below:

Category — Match the stressor observed with the appropriate category numbers shown in the "road map" at the tops of the pages 4 and 5, and record in the box at the far left of the response line

Stressor — Write a brief description of the stressor--what it is as opposed to where it takes place

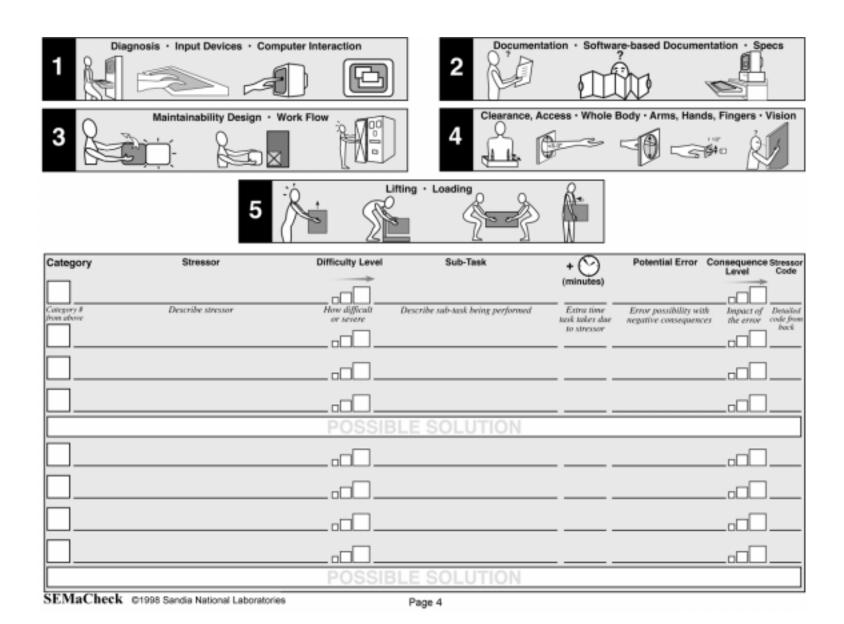
Difficulty Level — Check the small box for low, middle box for medium, and large box for severe stressor, in terms of negative impact on worker productivity

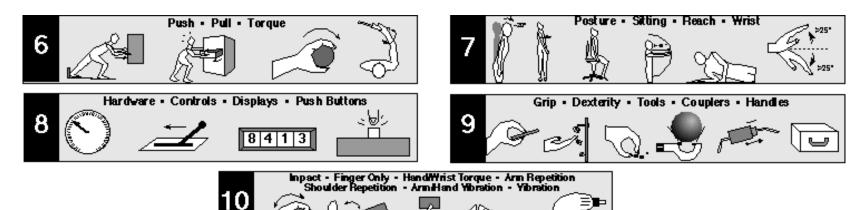
Sub-task — Identify or describe the part of the task with which the stressor is associated

Clock — Enter the estimated additional time taken due to the stressor in minutes--be sure not to repeat the minutes if combining several stressors

Potential Error — Describe a possible error that could be committed due to the presence of the stressor, but only if the error would have some negative consequences—not if the error would be immediately corrected

Consequence Level — Check the small box for low, middle box for medium, and large box for high consequences of an error made

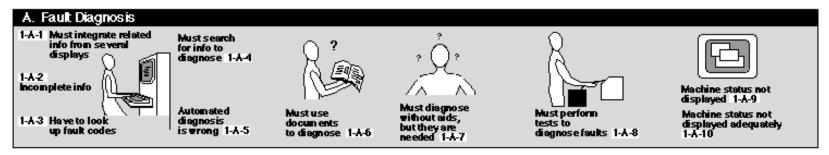

Stressor Code — Look up the stressor code in the reference section and fill in the blank. If code does not exist, critically evaluate if the stressor is severe enough to report. If so, put an "X" in the blank and write a description of the stressor in the reference section. If the stressor is relatively mild, or would take prolonged exposure to cause productivity deficits, drop the stressor from further analysis.

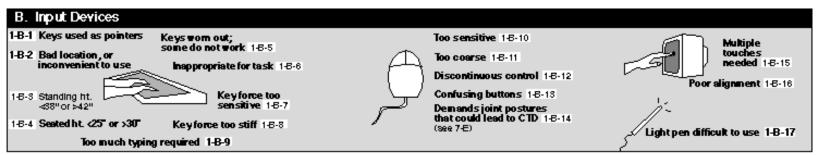

Possible Solution — This blank space is for writing in any ideas concerning what would alleviate the stressor, either through machine redesign, protective measures, different tools, etc.

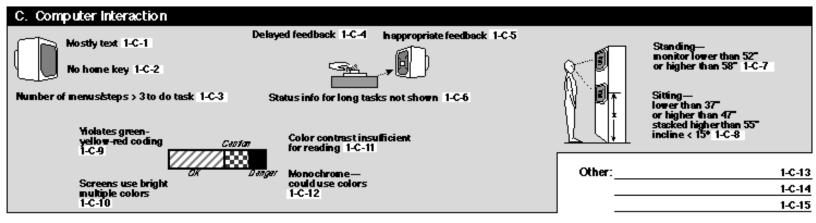
SEMaCheck

Sandia Ergonomic Maintenance Checklist Questions for Maintenance Technician <u>prior to</u> field observations:

Task Information and Timing						
How often is this task performed of	on each machine?	Times per				
What is the typical duration of the	entire task?	_hrsm	in.			
What segment of the task will I be	observing?					
How long does this segment typic	ally take to perform?	hrs	min.			
Will you be under any time pressu	<u>ire</u> to complete the ta:	sk? 1 None ·	2 Some	3 Moderate	· 4 Considerable	• 5 Severe
Experience						
How much training did you get on	this task?				_	
Who performed the training?					_	
How many times (total) have you	performed this task?,				_	
When was the last time you perfo	med this task?				_	
Do you have any ideas on how to	improve the task?					
Session Information:						
Observer	N	Machine			_	
Task Performed		□РМ □ИМ				
Auxil. Equipment needed						
Performed by:	h.(s) 🗆 contractor(s					
Current shift hours: to	Today's dat	te:				
Session start time:	Session end ti	ime:				
Checklist data covers portion of ta	isk, or <u>steps:</u>				_	

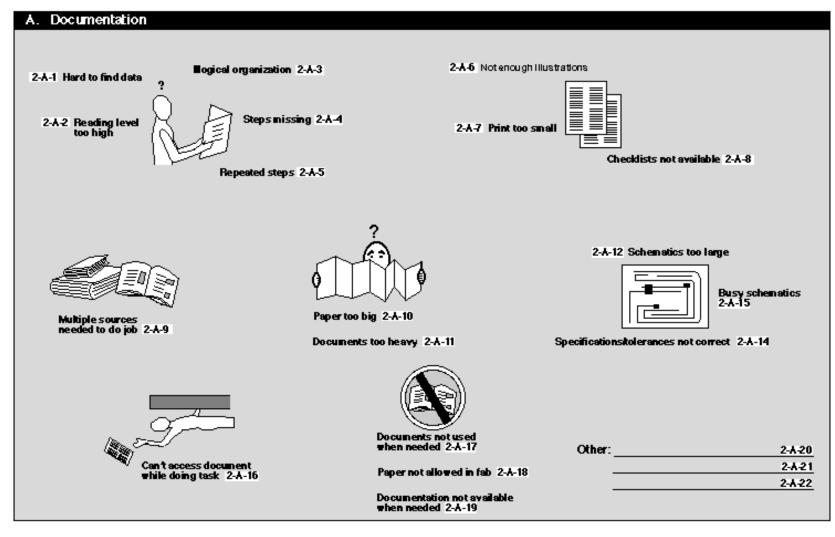

Category	Stressor	Difficulty Level	Sub-Task	+ (5)	Potential Error Co	nsequenceStressor Level Code
				(minutes)		
Category # from above	Describe stressor	Now Attoute or severe	Describe so b-task being performed	Extra time task takes due to stressor	Irror possikilty wik negotive consequences	Impact of Detailed the error back
		POSSIBI	_E SOLUTION			
		POSSIBI	LE SOLUTION			

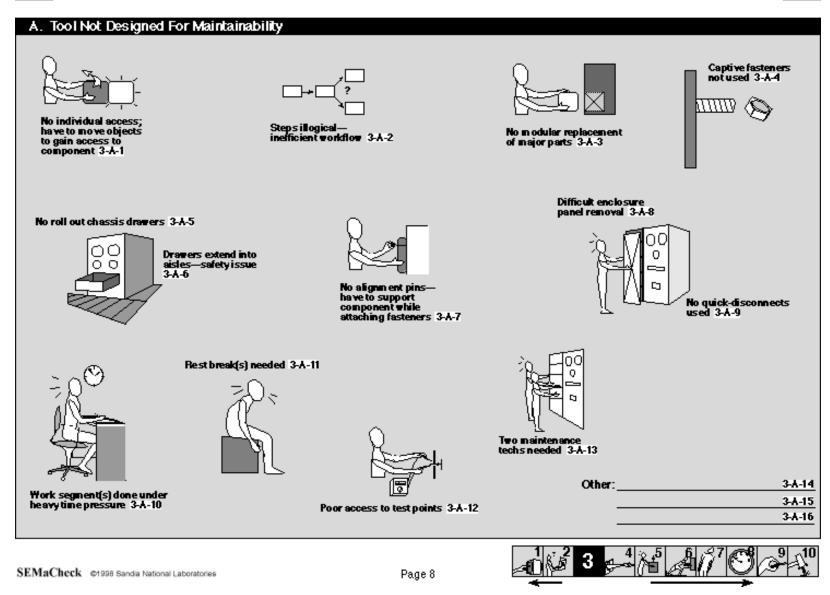

SEMaCheck @1998 Sandia National Laboratories


1

FAULT DIAGNOSIS · HUMAN-COMPUTER INTERACTION

SEMaCheck ©1998 Sandia National Laboratories

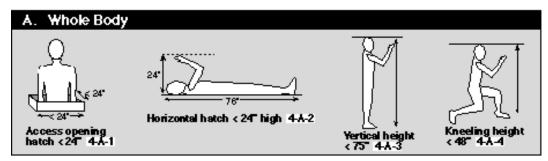

Page 6

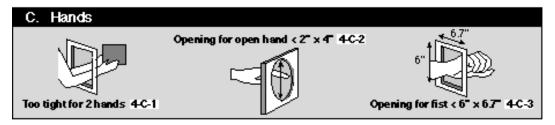


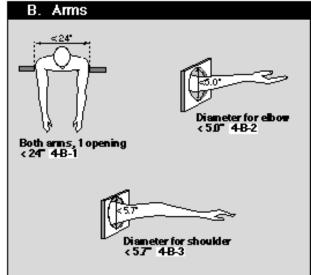
2

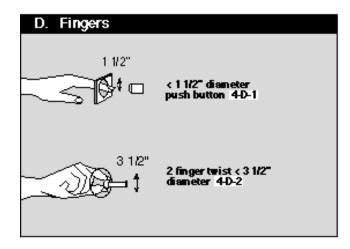
DOCUMENTATION · SPECS

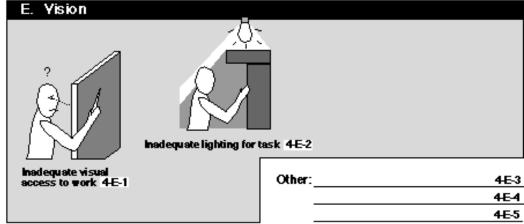
2

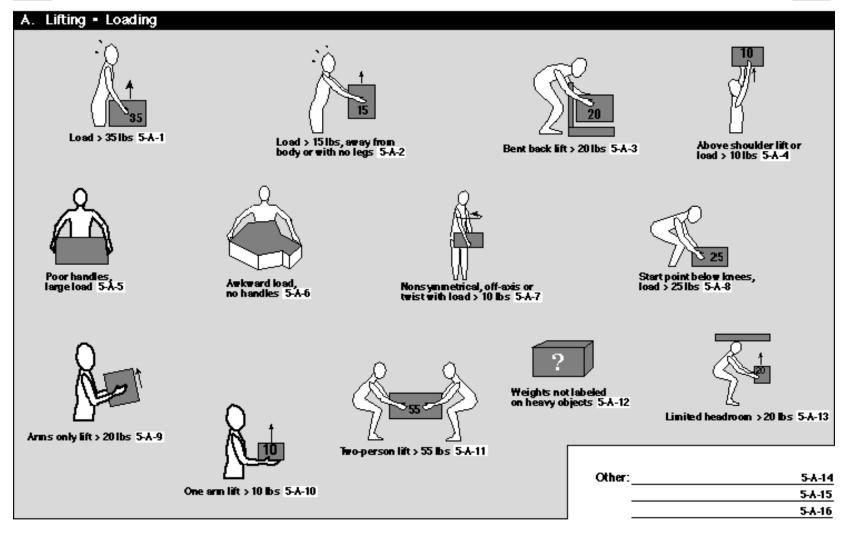




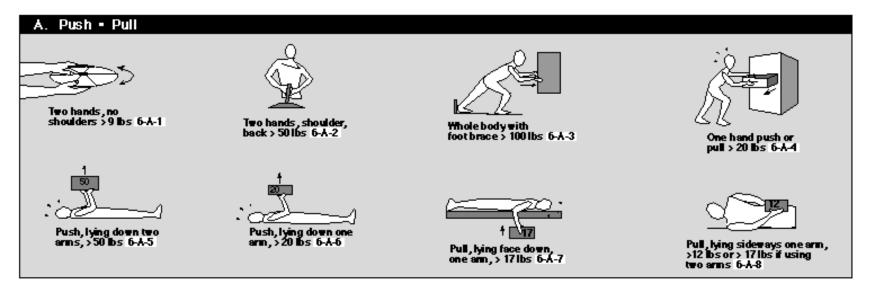



CLEARANCE · ACCESS

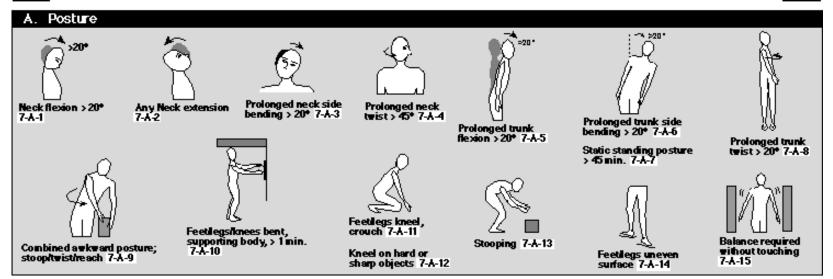


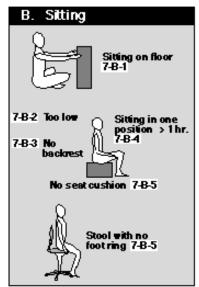


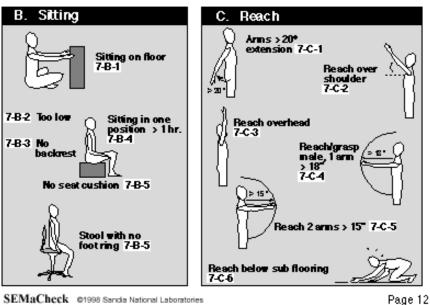
SEMaCheck @1998 Sandia National Laboratories

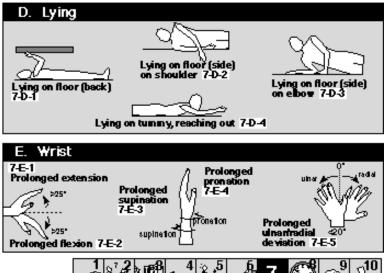

Page 10

PUSH · PULL · TORQUE

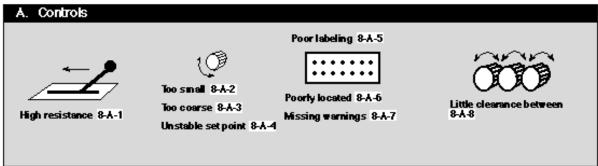


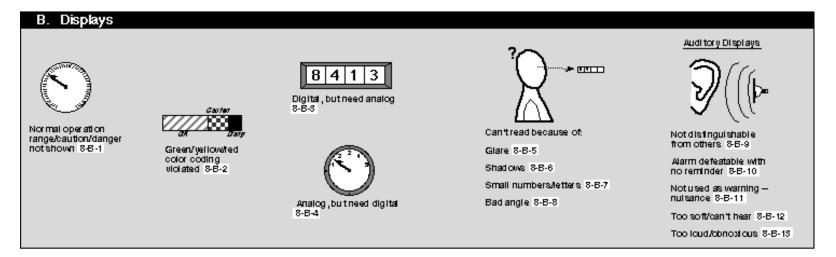



B. Torque		
One hand > 15 ft lbs 6-B-1	Arm > 15 ft lbs 6-B-2	Body > 40 ft lbs 6-B-3


Other:	6-B-4
	6-B-5
	6-B-6

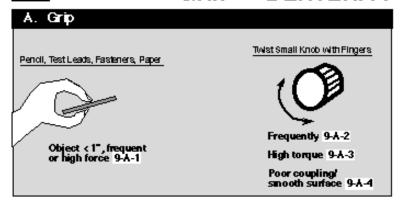
Page 12

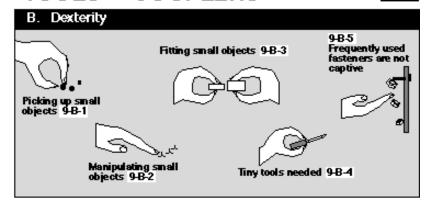


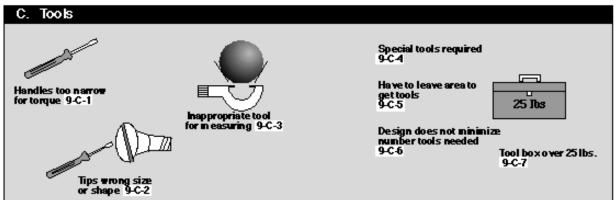

HARDWARE . CONTROLS . DISPLAYS

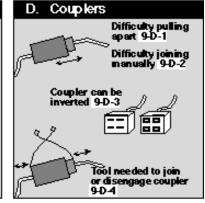
8-C-6

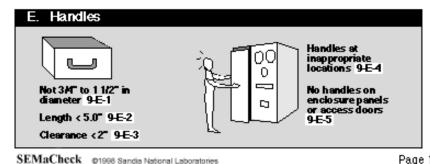
8-C-7 8-C-8



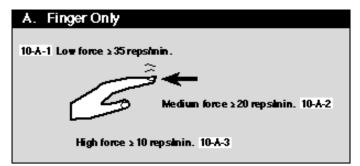

1 2 1 4 1 5 1 7 8


Other:

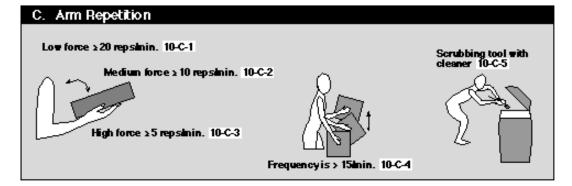

SEMaCheck ©1998 Sandia National Laboratories


GRIP • DEXTERITY • TOOLS • COUPLERS

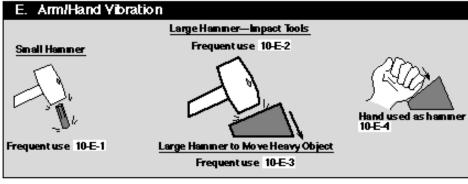
9-E-6 9-E-7 9-E-8

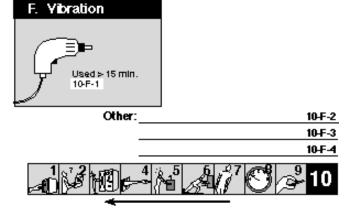


Page 14



REPETITION • IMPACT • VIBRATION





SEMaCheck @1998 Sandia National Laboratories

Page 15

APPENDIX G COMPLETE DATA SET

	Mtype	Machine	MBrand	Task	Freq.	Nom.T	Act	Pres
1	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
2	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
3	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
4	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
5	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
6	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
7	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
8	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
9	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
10	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
11	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
12	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
13	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Beam Stop	.5	30	•	2
14	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
15	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
16	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
17	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
18	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
19	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
20	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
21	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
22	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
23	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
24	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
25	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
26	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
27	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
28	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
29	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
30	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
31	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
32	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
33	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
34	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
35	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
36	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	·	3
37	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
38	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
39	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
40	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0		•	3
41	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
42	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
43	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
44		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
45	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	 		3
46	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	<u> </u>		3
47	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
48		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
49		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
50		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
51		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
52		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
53		I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0			3
54	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	<u> </u>	3

T	Mtype	Machine	MBrand	Task	Freq.	Nom.T	Act	Pres
55	IMPL	I-AMAT 9500, IMP 10	9500	Remove/Replace Source	24.0	120	•	3
56	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
57	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
58	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
59	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
60	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
61	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
62	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
63	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
64	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
65	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
66	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
67	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
68	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
69	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
70	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
71	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
72	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
73	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
74	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
75	IMPL	I-AMAT 9500, IMP 10	9500	Scrub MRS & Source Cham	24.0	60	60	3
76	DEP	CVD-AMAT 5000	CVD	Beam Line PM (remove/repl	12.0	60	•	3
77	DEP	CVD-AMAT 5000	CVD	Beam Line PM (remove/repl	12.0	60	•	3
78	DEP	CVD-AMAT 5000	CVD	Beam Line PM (remove/repl	12.0	60	•	3
79	DEP	CVD-AMAT 5000	CVD	Beam Line PM (remove/repl	12.0	60	•	3
80	DEP	CVD-AMAT 5000	CVD	Beam Line PM (remove/repl	12.0	60	•	3
81	DEP	CVD-AMAT 5000	CVD	Beam Line PM (remove/repl	12.0	60	•	3
82	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
83	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
84	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
85	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
86	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
87	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
88	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
89	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
90	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	.1
91	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
92		CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
93		CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
94	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
95	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
96	DEP	CVD-AMAT 5000	CVD	Clean Siline Chamber	24.0	60	105	1
97	DEP	CVD-AMAT 5000	CVD	Remove Extraction Electrod	12.0	60		3
98	DEP	CVD-AMAT 5000	CVD	Remove Extraction Electrod	12.0	60	·	3
99	DEP	CVD-AMAT 5000	CVD	Remove Extraction Electrod	12.0	60	1	3
100	IMPL	Imp-EATON GSD	EAT	Ebara pump	2.0	120	120	3
101	IMPL	Imp-EATON GSD	EAT	Post Excell Electrode	2.0	30	•	3
102	IMPL	Imp-EATON GSD	EAT	Post Excell Electrode	2.0	30	•	3
103	IMPL	Imp-EATON GSD	EAT	Post Excell Electrode	2.0	30	•	3
104	IMPL	Imp-EATON GSD	EAT	Post Excell Electrode	2.0	30	•	3
105	IMPL	Imp-EATON GSD	EAT	Post Excell Electrode	2.0			3
106	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
107	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
108	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2

	Mtype	Machine	MBrand	Task	Freq.	Nom.T	Act	Pres
109	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
110	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
111	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
112	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
113	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
114	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
115	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
116	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
117	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
118	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
119	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
120	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
121	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
122	IMPL	Imp-EATON GSD	EAT	Semiannual PM	2.0	120	120	2
123	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
124	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
125	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
126	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
127	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
128	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
129	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
130	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
131	IMPL	Imp-EATON GSD	EAT	Source Housing PM	24.0	120	60	2
132	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
133	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
134	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
135	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
136	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
137	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
138	IMPL	Imp-EATON GSD	EAT	Source, Extractor Exchange	24.0	120	120	3
139	STEP	S-SVG Micrascan Step	MICR	14-Day PM	30.0	30	•	•
140	STEP	S-SVG Micrascan Step	MICR	14-Day PM	30.0	30		
141	STEP	S-SVG Micrascan Step	MICR	14-Day PM	30.0	30	•	-
142	STEP	S-SVG Micrascan Step	MICR	Focus	104	20	12	
143	STEP	S-SVG Micrascan Step	MICR	Focus	104	20	12	3
144	STEP	S-SVG Micrascan Step	MICR	Focus	104	20	12	3
145		S-SVG Micrascan Step	MICR	Lamp Changeout	2.0	60	<u> </u>	<u> </u>
146		S-SVG Micrascan Step	MICR	Lamp Changeout	2.0	60	·	
147			MICR	Lamp Changeout	2.0	60		
148			MICR	Lift Arm on Longstroke & R	12.0			•
149			MICR	Lift Arm on Longstroke & R	12.0			•
150			MICR	Lift Arm on Longstroke & R	12.0			•
151			NIK	Cleaning & Lubricating Lea	26.0			
152			NIK	Cleaning & Lubricating Lea	26.0	+	20	
153			NIK	Cleaning & Lubricating Lea	26.0		20	
154			NIK	Cleaning & Lubricating Lea	26.0		20	
155			NIK	Cleaning & Lubricating Lea	26.0		20	
156			NIK	Cleaning & Lubricating Lea	26.0		20	
157			NIK	Cleaning & Lubricating Lea	26.0		20	
158			NIK	Cleaning & Lubricating Lea	26.0		20	
159		4	NIK	Cleaning & Lubricating Lea	26.0			
160			NIK	Cleaning & Lubricating Lea	26.0			•
161			NIK	Cleaning & Lubricating Lea	26.0			+
162	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	1 4

	Mtype	Machine	MBrand	Task	Freq.	Nom.T	Act	Pres
163	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	2
164	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	2
165	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	2
166	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	2
167	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	2
168	STEP	S-Nikon Steprs Body 7	NIK	Cleaning & Lubricating Lea	26.0	60	20	2
169	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
170	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
171	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
172	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
173	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
174	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
175	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
176	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
177	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
178	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
179	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
180	STEP	S-Nikon Stepr Body 11	NIK	Particle on chuck	170	10	20	4
181	DEP	S-Novellus Concept One	NOV	Gate Assembly (Valve) Clean	4.0	38	8	1
182	DEP	S-Novellus Concept One	NOV	Gate Assembly (Valve) Clean	4.0	38	8	1
183	DEP	S-Novellus Concept One	NOV	Gate Assembly (Valve) Clean	4.0	38	8	1
184	DEP	S-Novellus Concept One	NOV	Gate Assembly (Valve) Clean	4.0	38	8	1
185	DEP	S-Novellus Concept One	NOV	Gate Assembly (Valve) Clean	4.0	38	8	1
186	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
187	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
188	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
189	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
190	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
191	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
192	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
193	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
194	DEP	S-Novellus Concept One	NOV	Heater Block Scrup	24.0	120	•	1
195	DEP	S-Novellus Concept One	NOV	Spindle Rebuild	4.0	38	•	1
196	DEP	S-Novellus Concept One	NOV	Spindle Rebuild	4.0	38	•	1
197	DEP	S-Novellus Concept One	NOV	Spindle Rebuild	4.0	38	•	1
198	DEP	S-Novellus Concept One	NOV	Spindle Rebuild	4.0	38	•	1
199	DEP	S-Novellus Concept One	NOV	Spindle Rebuild	4.0	38	•	1
200		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
201		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
202		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
203		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
204		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
205		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
206		Imp-Varian Implanter	VAR	Air Bearing Replacement	1.0	720	•	4
207		Imp-Varian Implanter	VAR	Beam Dumpliner/Scan Defl	2.0	180	210	3
208		Imp-Varian Implanter	VAR	Beam Dumpliner/Scan Defl	2.0	180	210	3
209		Imp-Varian Implanter	VAR	Beam Dumpliner/Scan Defl	2.0	180	210	3
210		Imp-Varian Implanter	VAR	Beam Dumpliner/Scan Defl	2.0	180	210	3
211		Imp-Varian Implanter	VAR	Beam Dumpliner/Scan Defl	2.0	180	210	3
212		Imp-Varian Implanter	VAR	Beam Dumpliner/Scan Defl	2.0	180	210	3
213		Imp-Varian Implanter	VAR	Cylanoid Failure	2.0	60	•	4
214		Imp-Varian Implanter	VAR	Cylanoid Failure	2.0	60	•	4
215		Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	. •	2
216	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2

	Mtype	Machine	MBrand	Task	Freq.	Nom.T	Act	Pres
217	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
218	IMPL.	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
219	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
220	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
221	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
222	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
223	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
224	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
225	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
226	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
227	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
228	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
229	IMPL	Imp-Varian E1000 Imp.	VAR	Manipulator Changeout	12.0	50	•	2
230	IMPL	Imp-Varian Implanter	VAR	Post Acell Plate Change	.5	180	210	4
231	IMPL	Imp-Varian Implanter	VAR	Post Acell Plate Change	.5	180	210	4
232	IMPL	Imp-Varian Implanter	VAR	Post Acell Plate Change	.5	180	210	4
233	IMPL	Imp-Varian Implanter	VAR	Post Acell Plate Change	.5	180	210	4
234	IMPL	Imp-Varian Implanter	VAR	Post Acell Plate Change	.5	180	210	4
235	IMPL	Imp-Varian	VAR	Remove Source Bushing PM	12.0	60	•	3
236	IMPL	Imp-Varian	VAR	Remove Source Bushing PM	12.0	60	•	3
237	IMPL	Imp-Varian	VAR	Remove Source Bushing PM	12.0	60	•	3
238	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
239	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
240	IMPL.	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
241	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
242	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
243	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
244	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
245	IMPL	Imp-Varian E1000 Imp.	VAR	Remove/Replace Mass Slit	12.0	60	•	2
246	IMPL	Imp-Varian E1000 Imp.	VAR	Source Change	24.0	38		3
247	IMPL	Imp-Varian E1000 Imp.	VAR	Source Change	24.0	38	- •	3
248	IMPL	Imp-Varian E1000 Imp.	VAR	Source Change	24.0	38	•	3
249	IMPL	Imp-Varian E1000 Imp.	VAR	Source Change	24.0	38	•	3
250	IMPL	Imp-Varian E1000 Imp.	VAR	Source Change	24.0	38	•	3
				Ÿ				

Т	Who	Tim	Group	Block	Item #	Add	Diffi	Suggestion	Write-In	Erro	Cons	Inclu.Sc
							1	0.99			0	292
	In House	9	4	3	1	2					0	292
2	In House	9	4	3	2	2	1				0	292
3	In House	9	5	1	11	0	3				0	292
4	In House	9	5	1	1	0					0	292
5	In House	9	3	1	1	0	3					292
6	In House	9	5	1	5	0	3		Manage		0	292
7	In House	9	9	5	4	0	3		None; n		0	
8	In House	9	6	1	3	0	1				0	292
9	In House	9	5	1	12	0	1				0	292
10	In House	9	10	2	1	0	1				0	292
11	In House	9	9	2	2	0	1				0	292
12	In House	9	1	1	8	0	1				0	292
13	In House	9	4	4	2	0	1				0	292
14	In House	5	1	2	17	2	2				0	292
15	In House	5	3	1	1	0	3				0	292
16	In House	5	7	1	6	0	3				0	292
17	In House	5	5	1	13	0	3				0	292
18	In House	5	5	1	8	0	3				0	292
19	In House	5	5	1	16	0	3		No Han		0	292
20	In House	5	7	1	10	0	3				0	292
21	In House	5	5	1	6	0	3				0	292
22	In House	5	5	1	1	0	3				0	292
23	In House	5	5	1	3	0	3				0	292
24	In House	5	9	2	5	5	1				0	292
25	In House	5	5	1	2	0	3				0	292
26	In House	5	5	1	7	0	3				0	292
27	In House	5	4	4	2	2	1				1	292
28	In House	5	4	5	1	2	1			1	1	292
29	In House	5	9	3	4	5	2				2	292
30	In House	5	7	3	6	0	3			Dr	2	292
31	In House	5	7	1	5	5	3			 	0	292
32	In House	5	6	1	7	5	3			1	3	292
33	In House	5	7	3	5	0	3			Dr	2	292
34	In House	5	4	1	5	5	3			1	2	292
1	In House	5	7		1	1 0				Dr	2	292
36	In House	5		1	4	1 0		1		Ba	2	292
37		5			7	5	1	<u> </u>		† 	3	292
38		5			10			 	 	 	1	292
1	In House	5	3		8			 	-	 	1	292
	1	5	1 1	3					 		1	292
1	In House			3		1 8		 		 	1	292
41		5	_i	1		1 0		 	Not Co	 	2	292
42								 	1401 00		2	292
43						1		 	No Vov		2	
44				2				ļ	No Key	┼	0	
45	1								<u> </u>	—		
46									 	 	0	
47					_	0				 	0	
48		_							<u> </u>	 	0	
49										ļ	0	
50						_			<u> </u>	<u> </u>	0	
51									<u> </u>		1	292
52									<u> </u>		0	
53				_					<u> </u>	<u> </u>	0	_1
54	In House	5	6	1	9	0	2		Back Cl	<u> </u>	0	292

	Who	Tim	Group	Block	Itam #	Δdd	Diffi	Suggestion	Write-In	Erro	Conc	Indu Ca
F								Suggestion	AAUIG-IU	<u> </u> ⊏110		Inclu.Sc
55	In House	5	7	1	8	0	2			ļ	0	292
56	In House	7	7	1	1	0	2				0	292
57 58	In House	7	10	1	5	0	3			Ine	0	292
59	In House	7		3	2	0	1				0	292
	In House	7	7	1	3	0	2				0	292
60	In House	7	7	1	11	0	2	<u> </u>		ļ	0	292
61			7	1	7	0	2			ļ <u></u>	0	292
62	In House	7	4	1	4	5	3			Ine	0	292
63 64	In House	7	4	3	1	5	2			<u> </u>	0	292
65	In House	7	7	4	2	5	2			ine	0	292
66	In House	7	10 10	1 2	1	0	1			ļ	0	292
67	In House	7	7		1	0	1				0	292
68	In House	7	7	5 3	5 6	<u> </u>	2			1	0	292
69	In House	7	7	1	5	0				lne	0	292
70	In House	7	7	5	2	0	2	•			0	292
71	In House	7	7	5	1	0	2				0	292
72	In House	7	4	5	1	0	2			No	0	292
73	In House	7									2	292
74	In House	7	9	5 3	6	0	2	Better scr	Dinch O-i-	No	2	292
75	In House	7	7	1	10	0		Better scr	Pinch Grip		0	292
76	In House	8	6	1	7	0	2				0	292
77	In House	8	5	1	2	0	2	Install me			0	1960
78	In House	8	4	1	3	0		изынте			0	1960
79	In House	8	5	1	12	0	3				0	1960
80	In House	8	3	1	7	30					0	1960
81	In House	8	5	1	12	0	3				0	1960
82	In House	9	3	1	9	0	3				0	1960
83	In House	9	9	2	1	10					0	1960
84	In House	9	2	2			2				0	1960
85	In House	9	7	3	7	0	2				0	1960
86	In House	9	9	4	5	20	2				0	1960
87	In House	9	1	3	5	0	2				0	1960
88	In House	9	3	1	1	5	2				0	1960
89	In House	9	5	1	15	0	3				0	1960
90	In House	9	4	5							0	1960
91	In House	9	1	1	3	<u> </u>	3 2				0	1960
92	In House	9	7	1	3	0	3				0	1960
93	In House	9	4	5	3	0	3				0	1960
94	In House	9	1	1	4	0	2				0	1960
95	In House	9	7	3	2	10	3				0	1960
96	In House	9	1	3	2	0	3				0	1960
97	In House	8	5	1	12	0	3				0	1960
98	In House	8	5	1	2	0	3				0	1960
99	In House	8	5	1	16	0	3		1 imitaal		0	1960
100	In House	8	3	1	4	60	3		Limited	D-	0	1960
100	In House	10	5	1	14	10	3			Da	3	432
102	In House	10	7	1	9	10	2			dr	3	432
102	In House	10	4	5	1	10	3			dr	3	432
103	In House	10	4	3	2	10	3			dr	1	432
104	In House	10	4	1	5	0	2			dr	1	432
105	In House	8	4	2	4		2				0	432
100	In House	8	9	1	1	0	2				0	432
107	In House	8	4	-	3	30	3				0	432
100	iii i iouse	ै	4		<u> </u>	30	3				0	432

	Who	Tim	Group	Block	Item #	Add	Diffi	Suggestion	Write-In	Erro	Cons	Inclu.Sc
109	In House	8	7	5				Suggestion	AALIG	E110		
110	In House	8		5	2	0	2				0	432
111	In House	8	9		2	0	2			<u> </u>	0	432
112	In House	8	7	2	2	0	2				0	432
113	In House			1	9	0	3				0	432
114	In House	8	5 7	1	9	0	3				0	432
115	In House	8	5	1	10	0	3				0	432
116	In House	8	4	5	1	15	2				0	432
117	In House	8	7	3	2	0	2				0	432
118	In House	8	9	2	5	0	2				0	432
119	In House	8	9	6	1	0	1		No han		0	432
120	In House	8	7	5	1	0	2		NO Han		0	432
121	In House	8	6	1	9	0	2		Kneelin		0	432
122	In House	8	9	2	1	0	2		Kileeliii		0	432 432
123	Factory	15	9	5	4	0	3			-	0	432
124	Factory	15	7	1	10	0	3				0	432
125	Factory	15	7	1	9	0	3			— —	0	432
126	Factory	15	6	1	9	0	3		· · · · · · · · · · · · · · · · · · ·		0	432
127	Factory	15	7	1	1	0	2				0	432
128	Factory	15	7	1	5	0	2		·		0	432
129	Factory	15	5	1	9	0	3				0	432
130	Factory	15	5	1	1	0	3			-	0	432
131	Factory	15	9	6	1	10	1				0	432
132	In House	10	5	1	10	10	3	· · · · · · · · · · · · · · · · · · ·		da	3	432
133	In House	10	7	1	9	15	2			da	3	432
134	In House	10	3	1	6	15	3			<u>uu</u>	0	432
135	In House	10	4	4	2	10	3			da	3	432
136	In House	10	9	3	6	15	3			da	3	432
137	In House	10	4	5	1	0	3			gui	0	432
138	In House	10	5	1	10	15	3			inc	2	432
139	In House	•	7	1	5	0	1				0	600
140	In House	•	7	1	6	0	1				0	600
141	In House	•	7	3	5	0	1				0	600
142	In House	7	4	1	5	2	2				0	600
143	In House	7	4	4	2	1	1				0	600
144	In House	7	7	3	3	1	1				0	600
145	Factory	•	3	1	6	0	3				0	600
146	Factory	•	7	3	3	0	3				0	600
147	Factory	•	4	5	1	0	3				0	600
148	Factory	•	7	1	9	0	3				0	600
149	Factory	•	7	1	8	0	3				0	600
150	Factory	•	5	1	11	0	3				0	600
	In House	8	4	1	2	0	3				0	936
	In House	8	7	1	10	0	3				0	936
	In House	8	7	1	2	0	3				0	936
-	In House	8	4	5	1	5	3				0	936
	In House	8	3	1	7	5	2				0	936
	In House	8	4	2	4	20	3		Must re		0	936
	In House	8	4	5	2	5	3				0	936
	In House	8	9	1	1	0	2				0	936
	In House	8	7	1	3	0	2				0	936
	In House	8	9	1	6	0	2		Must us		0	936
	In House	8	9	5	1	0	1		No han		0	936
162	In House	8	7	5	2	0	2				0	936

	Who	Tim	Group	Block	Itom #	٨٨٨	Diffi	Cuggostian	Maria da	TE	10	
163	In House							Suggestion	Write-In	Erro	Cons	Inclu.Sc
	In House	8	7	1	7	0	2			ļ	0	936
164 165	In House	8	3	1	5	0	3			├	0	936
	In House	8	7	1	5	0	3			ļ	0	936
166		8	7	1	9	0	3			ļ	0	936
167	In House	8	7	3	4	0	3			ļ	0	936
168	in House	8	7	1	4	0	3				0	936
169	In House	11	4	1	5	0	3				0	936
170	In House	11	7	1	10	0	3				0	936
171	In House	11	7	1	5	0	2			ļ	0	936
172	In House	11	4	5	2	0	2				0	936
173	In House	11	4	5	1	0	2			<u> </u>	0	936
174	In House	11	7	1	7	0	2			<u> </u>	0	936
175	In House	11	7	3	4	0	3				0	936
176	In House In House	11	7	1	9	0	3			ļ	0	936
177		11	7	1	4	0	2				0	936
178	In House	11	3	1	8	0	2			<u> </u>	0	936
179	In House	11	3	1	7	2	3				0	936
180	In House	11	7	5	1	0	1				0	936
181	In House In House	7	7	1	5	2	2				0	1344
182 183	In House	7	7	3	3	1	2			 	0	1344
184	In House	7	9	6		1	2		Force &		0	1344
185		7	4	3	1	1	1				0	1344
186	In House In House		9 7	2	5	1	1				0	1344
187	In House	7	7	3	4	0	2				0	1344
188	In House	7	7	_ 1	8	10	2			Injury	0	1344
189	In House	7		1	5	10	2			Injury	0	1344
190	In House	7	5 7	1	6	1 5	2			Injury	0	1344
191	In House	7	7	5	1	10	2			Injury	0	1344
192	In House	7	5	1	1	0	2				0	1344
193	In House	7	10	3	4	10	2			Jan is seen a	0	1344
	In House	- '	10	4	4	5	2		Comula 6	Injury	2	1344
	In House	7	7	- 1	10	0	2		Scrub f	Injury	2	1344
	In House	7	9	2	6	2	2		T:	_	0	1344
	In House	7	9	2	3	0	2		Fingers	ali	1	1344
	In House	7	4	5	1	3	2			-	0	1344
	In House	7	9	- 1	- 1	- 6	2			То	3	1344
_	In House	8	4	1	2	0	2			inive	0	1344
	In House	8	5	1	7	0	3			injury	1 0	976
	In House	8	3	1	1	120	3			ite	3	976 976
	In House	8	4	5	1	0	2			11e	0	
	In House	8	5	1	4	0	3				0	976
	In House	8	4	1	- 7	0	2			injury		976
	In House	8	7	$\frac{1}{1}$	7	- 6	3			injury	1	976
	In House	8	3	1	6	30	3				0	976 976
	In House	8	7	3	4	10	1			da	3	976
	In House	8	7	1	7	10	2			da	3	976
	In House	8	3	- i 	7	0	3			ua	0	976
	In House	8	7	3	5	0	1				- 0	976
	In House	8	3	1	1	10	1			da	3	976
	In House	8	7	4	3	15	3			uu	0	976
	In House	8	7	3	7	15	3		Reach i		- 6	976
	In House	7	3	1	1	15	2				0	976
	In House	7	7	3	5	5	3			Mi	1	976
										1VII	<u> </u>	9/6

	Who	Tim	Group	Block	ltem #	Δdd	Diffi	Suggestion	Write-In	Erro	Cons	Inclu.Sc
217	In House	7	10	1	1	0	2	Juggestion	***************************************			976
218	In House	7	9	1	1			llas pina i			0	
219	In House	7		5		0	2	Use pins i		 	0	976
	In House	7	10		1	0	1	llas mina i		 	0	976
220	In House	7	5	2	1	5	2	Use pins i		14:	0	976
221		7	7	1	2	1		Pullout dr		Mi	1	976
222	In House	7		5	2	1	2			 	0	976
223	In House		4	1	4	3	2	D 11		<u> </u>	0	976
224	In House	7	7	1	5	0	3	Pullout dr		<u> </u>	0	976
225	In House	7	9	3	1	2	1			ļ	0	976
226	In House	7	7	1	8	3	3			ļ	0	976
227	In House	7	3	1	4	2	2			ļ	0	976
228	In House	7	10	2	2	2	1	Use pins i			0	976
229	In House	7	5	1	13	1	3	Pullout dr		Mi	1	976
230	In House	8	4	1	1	15	2			da	3	976
231	In House	8	5	1	7	0	3			da	3	976
232	In House	8	5	1	11	15	3			da	3	976
233	In House	8	7	1	7	0	2			da	3	976
234	In House	8	7	3	2	0	2			ļ	0	976
235	In House	8	5	1	5	0	3				0	976
236	In House	8	5	1	2	0	3				0	976
237	In House	8	5	1	12	0	3				0	976
238	In House	7	9	2	1	1	1				0	976
239	In House	7	5	1	13	2	3	Pullout dr			0	976
240	In House	7	7	1	8	0	3				0	976
241	In House	7	9	1	1_	6	2	Pins inste			0	976
242	In House	7	4	5	1	2	2	Pullout dr			0	976
243	In House	7	7	1	5	0	2	Pullout dr		Be	0	976
244	In House	7	7	3	5	0	2				0	976
245	In House	7	5	1	2	2	3	Pullout dr		Hit	1	976
246	In House	7	5	1	2	0	2			wri	3	976
247	In House	7	9	1	1	1	1				0	976
248	In House	7	7	3	2	1	1	Hoist may			0	976
249	In House	7	6	1	4	1	1				0	976
250	In House	7	9	2	1	0	1				0	976

APPENDIX H Technicians' and Observers' Solutions

Machine	Task/Task Segment	Suggested Solution
Applied 5000	Chamber clean Cleaning Silane chamber	Improve access; package service tools with cleaning supplies in PM tool kit
Applied 9500	Beam Line PM Remove/Replace MRS	Install a mechanical hoist to assist lifting of device
	R/R Beam Stop UM R/R Beam Stop Plate	handles on shielding and plate; lighter weight; mechanical hoist
	R/R Source, MRS, etc. PM R/R Source	more head room above MRS; handles on shields; hinged shields; install keyboard
	Scrub MRS & Source Chmbrs Scrub implanter chambers PM	use different scrubber (better scrub pad); use chemical to clean residue; more head room
Nikon Stepper Body 7	Clean & Lube Lead Screws PM same as task	improve access to the lead screws
Nikon Stepper Body 11	Particle on Chuck UM Access and Clean	improve access to chuck; improve door removal latches
	Reticle Change same	better software, decrease process steps
Varian	Source Change PM Remove Source & Replace	hoist or support for the source as it is pulled out (better design than previous hoist which did not adequately catch the source and caused sheering)
Varian	Manipulator Change-out PM Remove/Replace Manipulator	pins for pullout drawers instead of bolts and screws
Varian	6-month PM Beam Dump Lines, Scan Deflector, Dipole Lines	relocate or redesign door to allow better access; relocate smoke detector to allow removal of scanner
Varian	Solenoid Failure UM same	improve access and removal of vacuum pump
Varian	Post Excell Plate Change UM same	improve access; a device to assist lifting
Varian	Air Bearing Replacement UM same	redesign so that vacuum pump removal is not necessary (very time consuming)
Novellus Concept One	Heater Block Scrub PM same	self-cleaning block; 2-person lift for barrel removal
Eaton GSD-160	Source Housing PM	quick disconnects on modular parts (couplers)
Eaton	Source/Extractor PM Source Change & Extractor	guide or support to help bear weight and align bolts
Eaton	Post Excell Electrode PM same	improve access to bolts and unit; a guide help align bolts, support weight
Eaton	Ebara Pump Maintenance PM same	install pump package on pullout drawer for easier access and maintenance

APPENDIX I.Solutions for Top Ten Stressors

The top ten stressors and total cost scores are listed in the first column. Potential solutions for the stressors were suggested by technicians, SNL engineers, and PTAB members. Each solution was rated by three SNL engineers as to relative benefit and cost. The assumptions were: design changes are made during a regular (not a rework) design cycle or process, benefits are considered in terms of productivity, costs are considered in terms of supplier's costs in design and implementation. The three were negotiated to arrive at consensus scores. The ratings were used together with the combined cost scores (in parentheses at left) to develop optimized sets of solutions for different spending levels (see Appendix J).

Stressor	Solutions Relative Benefit			t (1-10) Cost (1-10)		
1. Difficult	Eliminate fasteners, use snap fit or hanging panels			3		
Panel Removal	Use captive fasteners or quick disconnects in conver	nient locations	5	2		
(1474)	Use lighter panels and add handles in appropriate localifting	cations for	6	3		
	Use telescoping or sliding panels to eliminate panel	removal	7	5		
	User provides storage space for removed panels som equipment	newhere near the	4	4		
2. Kneeling, standing with	Locate most frequently accessed components between levels	en waist and eye	9	9		
legs bent	Use fatigue mats or pad the flooring inside enclosure	es	3	1		
(1182)	Provide knee pads to maintenance personnel		1	1		
	Provide folding stools or sit-stand supports		3	1		
3. Arm lifting	Improve body access so that lifts are closer to torso		7	7		
(1028)	Use guide-locating devices such as pins to help locate and support components while fastening Significantly reduce the weights of removable components			4		
				7		
	Provide supports or hoists for parts over 50 lb.		9	5		
4. Long reaches	Provide light extension handles for tools		3	2		
(977)	Use roll-out drawers and hinged subassemblies to fo	10	10			
5. Poor component	chassis, etc. either for immediate access external to enclosure or to provide access to other components deeper in the enclosure					
access (813)	Route gas and electrical lines together to increase access space			5		
6. Awkward	Mount frequently accessed components at upper tors	so heights	9	9		
postures (727)	Enlarge footprint conservatively and strategically to increase body access space within enclosure			4		
(121)	Provide built-in steps for reaching higher parts					

Stressor	Solutions Relative Benefit			t (1-10) Cost (1-10)		
7. Poor visual	7. Poor visual Increase local illumination to 100 ftc		6	1		
access	Increase access openings in bulkheads		6	3		
(714)	Provide swing-away subassemblies		9	9		
	Relocate fasteners on parts for visibility		4	5		
	Provide tactile cues for blind work		5	4		
	Use captive fasteners		4	2		
8. Poor arm,	Enlarge access ports in panels and bulkheads		8	5		
hand, or finger access	Locate serviceable parts on exterior of enclosure		10	9		
(613)	Provide special tools to reach into tight quarters	8	4			
9. Heavy lifting	Label any removable parts exceeding 30 lb.,	3	1			
(279)	(279) Provide adequate handles for two-person lifts Provide supports or hoists for parts exceeding 50 lb., Provide closer torso access, room to stand erect, and good footing for heavy lifts		6	2		
			9	5		
			7	6		
10. Pinch grip,	10. Pinch grip, Use captive fasteners		7	2		
small objects	Provide magnetized tools		4	1		
(236)	Use larger fasteners than required by strength of materials requirements		3	2		
	Provide tools with larger diameter handles		5	1		
	Redesign fine adjustments to be less frequent		7	6		
	Total Cost			153		

APPENDIX J Solution Strategies

Using the relative cost and benefit scores shown in Appendix I, the following sets of solutions were selected via an optimization algorithm. The algorithm looks for the highest benefit/cost ratios while observing the logical constraints shown in the solutions column. The assumed total cost is 153, based on the sum of the relative cost scores from Appendix I. Optimal solution sets are shown in the columns under the spending limit or "budget" column headings. A budget of 20 out of 153 is considered minimal spending, while a budget of 40 is about 25% of the total, and 70 is about half of the total.

Solutions Budget =	20	30	40	50	60	70
Eliminate fasteners, use snap fit or hanging panels OR		•	•	•	•	•
Use captive fasteners or quick disconnects in convenient locations on enclosure panels	•					
Use lighter panels and add handles in appropriate locations for lifting OR	•	•	•	•	•	•
Use telescoping or sliding panels to eliminate panel removal OR						
User provides storage space for removed panels somewhere near the equipment		•	•	•	•	•
Locate most frequently accessed components between waist and eye levels, (OR REST IN GROUP)						
Use fatigue mats inside enclosures OR	•	•	•	•	•	•
Provide knee pads to maintenance personnel						
Provide folding stools or sit-stand supports		•	•	•	•	•
Improve body access so that lifts are closer to torso			•	•	•	•
Use guide-locating devices such as pins to help locate and support components while fastening	•	•	•	•	•	•
Significantly reduce the weights of removable components OR						
Provide supports or hoists for parts over 50 #	•	•	•	•	•	•
Provide light extension handles for tools		•	•	•	•	•
Use roll-out drawers and hinged subassemblies to fold out electronic chassis, etc. either for immediate access external to enclosure or to provide access to other components deeper in the enclosure						•
Route gas and electrical lines together to increase access space between groups of lines						
Mount frequently accessed components at upper torso heights						
Enlarge footprint conservatively and strategically to increase body access space within enclosure	•	•	•	•	•	•

Solutions	Budget =	20	30	40	50	60	70
Provide built-in steps for reaching higher parts						•	•
Increase local illumination to 100 ftc.		•	•	•	•	•	•
Increase access openings in bulkheads OR				•	•	•	•
Provide swing-away subassemblies OR							
Relocate fasteners on parts for visibility							
Provide tactile cues for blind work						•	•
Use captive fasteners on parts difficult to see			•		•	•	•
Enlarge access ports in panels and bulkheads OR					•	•	•
Locate serviceable parts on exterior of enclosure OR							
Provide special tools to reach into tight quarters					•	•	•
Label any removable parts exceeding 30 #							
Provide handles for two-person lifts						•	•
OR Provide supports or hoists for parts exceeding 50 above)	lb. (see						
Provide closer torso access, room to stand erect, footing for heavy lifts	and good						
Use captive fasteners to eliminate small parts OR							
Provide magnetized tools to captivate nuts OR						•	•
Use larger fasteners than required by strength of requirements	materials						
Provide tools with larger diameter handles					•	•	•
Redesign fine adjustments to be less frequent							

APPENDIX K Individual Tool Problems/Solutions

The following descriptions address the highest scoring stressors observed during data collection on the seven machines. Tasks, findings, cost scores, and solutions are listed. This is not an exhaustive list. More complete data were sent to the machine manufacturers as feedback, with the intention of alerting the suppliers of problems and kindling the problem-solving process.

Applied 5000 CVD

Task: Chamber Clean

Findings:

- 1. Fasteners unhooked too easily when disassembling the chamber, which added about 20 minutes to the normal task time. During the entire cleaning of the chamber, the tech had to lean against wires and couplers, which somtimes causes them to disconnect. Cost score = 379.
- 2. The tech had to reach above his shoulder to disassemble plates, which added about 10 minutes. Cost score = 310
- 3. The tech removed screws while wearing gloves, which added about 10 minutes. Cost score = 207.
- 4. Many menus hamper computer interaction, added about 5 minutes. Cost score = 121.
- 5. The tech had to remove doors to gain access and clean, which added about 5 minutes. Cost score = 121.
- 6. The tech had to carry a heavy tool chest (over 50 lbs.) upstairs. The techs had arranged for one to leave his tool chest upstairs for PMs, but not everyone was allowed to use this tool chest. Cost score = 113.

Solutions:

- 1. A cover that prevents the tech's body from pressing against couplers.
- 2. Improve access.
- 3. Package tools with cleaning supplies (PM tool kit).

Applied 9500 Implanter

Task: Beam Line PM (MRS, Flight Tube and Isolation Valve)

Finding: The technician had difficulty removing the enclosure panels which must be

removed to access the flight tube, MRS and isolation valve. The time added to the

normal task completion time was 5 to 30 minutes. The cost score is 52.

Solution: Handles on shields or hinged shields.

Task: Removal of the MRS Shield and MRS

1. Had difficulty removing MRS shield, estimated to weigh over 35 pounds. The Finding:

additional time was about 5 minutes. Cost score = 52.

2. Trunk flexion greater than 20 deg. was necessary.

Solution: Handles on the shields

Task: Remove/Replace Source

Findings: 1. The technician did not have sufficient head room (kneeling, ceiling too low).

The additional time was about 5 minutes. Cost score = 48.

2. Insufficient standing room (corona bar too low).

Cost score = 45.

3. The technician had to reach down to perform tasks; could have dropped the MRS. Cost score = 36.

4. A special tool was required to remove parts, also, tools were missing, e.g., crank wrench. Additional time about 5 min.

Cost score = 27.

5. The technician's wrist was in extension with a load when removing the MRS from the chamber. Cost score = 23.

6. The tech had a poor view of some screws and bolts; added about 2 minutes.

Cost score = 18.

Solutions: More head room above MRS, handles on shields, hinged shields, install a

keyboard.

Task: Scrubbing the Implanter Chambers

Findings: 1. Standing room was not adequate causing inefficient cleaning. Added about 5

min. Cost score = 45.

2. The technician had to kneel or lie down to reach below the platform which could result in inefficient cleaning. Added about 5 min. Cost score = 36.

3. Prolonged wrist extension was necessary. Cost score = 23.

4. Trunk flexion greater than 20 deg. was necessary.

Cost score = 22.

5. The chambers were too small to allow use of both hands. Added about 5 min.

Cost score = 21.

6. The technician had difficulty seeing into some areas requiring cleaning,

therefore, could not determine if clean enough. Cost score = 18.

Solutions:

Nikon Stepper

Task: Cleaning and Lubricating Lead Screws

Findings:

- 1. The technician had to find a place to put the panels after removing them, which added about 5 minutes to the normal task time. The cost score is 807.
- 2. The technician had to reach around other components to reach the lead screws. Added about 20 min. Cost score = 284.
- 3. Due to poor visual access, the tech had to perform the task partly by feel which could result in inadequate greasing. Cost score = 161.
- 4. Poor view of lead screws due to inadequate lighting; added about 5 minutes. Cost score = 161.
- 5. The tech had to stand in a bent knee position for up to one hour with short breaks to change position. Cost score = 132.
- 6. The tech had to reach (static arm reach over 24 inches). Cost score = 132.

Solutions:

Improve access to the lead screws. Provide tools with longer extensions. Improve lighting at task.

Task: Cleaning Procedure (Particle on Chuck)

Findings:

- 1. The tech had difficulty removing a panel due to the latches, which added about 2 minutes. Cost score = 807
- 2. The tech could not get close enough to see the chuck clearly. Cost score = 161.
- 3. Lighting for the task was inadequate. Cost score = 161.
- 4. The tech had to perform tasks on knees for over 10 min. Cost score = 132.
- 5. Arm reach greater than 18 inches was necessary to access chuck. Cost score = 132.

Solutions:

- 1. Improve door removal latches.
- 2. Improve access to the chuck.

Eaton Implanter

Task: Post Excell Electrode PM

Findings:

- 1. The technician must work in a bent leg or stooped position which makes part dropping or injury more likely and adds about 5 minutes to the task completion time. Cost score = 251.
- 2. The tech must support PE electrode while securing it, which makes part dropping or injury more likely and adds about 10 minutes to the task completion time. Cost score = 246.
- 3. A one-arm lift of the PE electrode (over 30 pounds) away from the tech's body was necessary. Cost score 188.

4. The tech had a poor view of the bolts. Added about 10 min. Cost score 134.

Solution:

Improve access to bolts and unit; provide a guide to help line up the bolts and support some of the weight.

Task:

Source/Extractor PM

Findings:

- 1. The tech had to crouch while working in the extractor area, which made part damage more likely and added about 5 min. Cost score = 251.
- 2. Twice, the tech had to support part weight with one arm. The source, which weighed about 25 pounds, was less likely to be seated properly and added about 15 minutes. The extractor weighed about 35 pounds and was more likely to be damaged. Cost score = 246.
- 3. A narrow space restricted access to the part, which makes part damage or dropped screws more likely. Cost score = 162.
- 4. The tech had a poor view when removing/inserting screws. Cost score = 134.

Solution:

A guide or support to help bear weight and align bolts.

Task:

Semi-annual PM

Findings:

- 1. Static kneel position was necessary. Cost score = 251.
- 2. Some fasteners were difficult to see, which added about 15 minutes to the task time. Cost score = 134.

Solution:

Task:

Ebara Pump Maintenance

Finding:

The tech had to remove the pump with a lift in order to service it. Added about 1 hour. Cost score = 273.

Solution:

Install pump package on a pullout drawer for easy access and maintenance.

Task:

Source Housing PM

Findings:

- 1. Tech had to support component while attaching fasteners. Cost score = 274.
- 2. Tech performed disconnecting and removal tasks in bent-knee position. Cost score = 251.

Solution:

Varian Implanter

Task:

Manipulator Change-out

Findings:

1. The technician had to remove the source housing to access the manipulator, which added about 15 minutes to the normal task completion time. Cost score = 381.

- 2. The tech had to lift the manipulator in a manner that made injury and part damage more likely (arm lift away from the body). Added about 1 minute. Cost score = 183.
- 3. The tech had to reach to grasp the manipulator, then lift and remove it. Added about 5 min. Cost score = 142.

Solution: Pullout drawers.

Task:

6-Month PM

Findings:

- 1. The tech had to move a door and fire detector to remove the scanner, which added about 10 minutes. Cost score = 381.
- 2. 1- and 2-arm reaches were necessary, which made part damage more likely and added about 10 min. Cost score = 142.
- 3. A tech had to twist and reach to assist in removal of the scanner. Added about 10 min. Cost score = 105.

Solutions:

- 1. Relocate or redesign door to allow better access.
- 2. Relocate the smoke detector to allow removal of the scanner.

Task:

Air Bearing Replacement (UM)

Findings:

- 1. The tech had to move the vacuum pump to gain access, which increased the task time by about 2 hours. Many operations require removal of the vacuum pump, which can add 2 hours to any job in this area. Cost score = 381.
- 2. The tech had to twist his trunk while working in the area with the pump in place. Cost score = 105.
- 3. Access was difficult without removal of the vacuum pump. Cost score = 98.

Solution:

Task:

Removal/Replacement of Mass Slit Assembly

Findings:

- 1. The tech had to perform an arm lift away from the body, which made damage to the mass slit assembly and injury more likely. Added 1 to 2 min. Cost score = 183.
- 2. The tech had to reach to access the mass slit assembly. Cost score = 142.

Solution:

Use pullout drawers.

Task:

Post Excell Plate Change

Findings:

- 1. A 2-person lift was necessary that made part damage more likely and added about 15 minutes. Cost score = 126.
- 2. The tech had to twist and lift. Cost score = 105.
- 3. The tech had to twist and lift due to limited access, which added about 15 minutes. Cost score = 98.

Task: UM due to Solenoid Failure

Findings: 1. The tech had to reach with his arms to work in the solenoid area, which added

about 15 minutes to the task time. Cost score = 110.

2. The tech had to lie on his side in the end station area while working on the

solenoid. Cost score = 110.

Solution: Improve access.

Task: Remove Source Bushing PM

Finding: Difficult lift of large box (about 40 lbs.) away from body; also, one tech holds

while another romoves bolts. Cost score = 183.

Solution:

Task: Source Change PM

Finding: Load (Source) held away from tech's body while pulling out.Cost score = 183.

Solution: Hoist or support for the source as it is pulled out.

Novellus Concept One

Task: Heater Block Scrub

Findings: 1. The technician had to scrub at about chest height, which added about 10

minutes to the normal task time. Cost score = 290.

2. The tech scrubbed with his shoulder flexed about 90 deg., which added about 5

minutes. Cost score = 124.

3. The tech scrubbed with his trunk flexed more than 20 degrees, which added

about 10 minutes. Cost score = 116.

Solution: Self-cleaning block. Provide step stool.

Task: Removal/Replacement of Spindle

Finding: The tech had poor visual access when aligning the spindle, which increased the

normal task time by about 3 minutes. Cost score = 130.

Solution:

Task: Gate Assembly Clean PM

Finding: The tech removed bolts and performed cleaning while sitting on the floor with

trunk flexed greater than 20 deg. The tech was about 5 ft. 6 in. tall; a larger person

would have had more difficulty. Cost score = 116.

Solution:

SVG Micrascan

Task: Focus (removal of screws)

Finding:

- 1. The technician had to kneel due to limited head clearance, which added about 2 minutes to the normal task time. Cost score = 119.
- 2. Turning screws to reinsert was hindered by limited space; added about 1 minute. Cost score = 37.
- 3. The tech had to reach overhead when readjusting the focus; added about 1 minute. Cost score = 23.

Solution: Better access.

Task: Changing the lamp

Finding: Tech had to reach overhead to remove bolts and open panel. Cost score = 23.

Solution: Provide step stool of built-in, flip down supports for technician to stand on.

SEMATECH Technology Transfer 2706 Montopolis Drive Austin, TX 78741

http://www.sematech.org