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Abstract—The electronics production is prone to a multitude 

of possible failures along the production process. Therefore, the 

manufacturing process of surface-mounted electronics devices 

(SMD) includes visual quality inspection processes for defect 

detection. The detection of certain error patterns like solder voids 

and head in pillow defects require radioscopic inspection. These 

high-end inspection machines, like the X-ray inspection, rely on 

static checking routines, programmed manually by the expert user 

of the machine, to verify the quality. The utilization of the implicit 

knowledge of domain expert(s), based on soldering guidelines, 

allows the evaluation of the quality. The distinctive dependence on 
the individual qualification significantly influences false call rates 

of the inbuilt computer vision routines. In this contribution, we 

present a novel framework for the automatic solder joint 

classification based on Convolutional Neural Networks (CNN), 

flexibly reclassifying insufficient X-ray inspection results. We 

utilize existing deep learning network architectures for a region of 

interest detection on 2D grayscale images. The comparison with 

product-related meta-data ensures the presence of relevant areas 

and results in a subsequent classification based on a CNN. 

Subsequent data augmentation ensures sufficient input features. 

The results indicate a significant reduction of the false call rate 

compared to commercial X-ray machines, combined with reduced 

product-related optimization iterations. 

Keywords—electronics production; automated X-ray inspection; 

machine learning; computer vision; Convolutional Neural Networks 

I.  INTRODUCTION 

The process performance in industrial production is 
commonly specified in occurring defects per million 
opportunities (DPMO). Trough progressing automation and 
enhanced process capability, electronics manufacturers nearly 
achieve single-digit DPMO-rates within their production 
processes. [1] Insufficient solder connections in the electronics 
production can result from a multitude of influencing factors so 
that a direct attribution to a single influencing factor is 
improbable. [2] The validation of the quality levels is realized 
with an extensive inspection coverage. Besides electrical test 
methods, optical inspection processes characterize the outer 
appearance of the products defined regions of interest (ROI). 
The increased application of integrated circuits (ICs) with 

covered ROIs like ball grid arrays (BGAs) justify the usage of 
X-ray based methods in addition to inspections using light in the 
visible spectrum. 

The automated X-ray inspection (AXI) typically represents 
the last optical inspection step in the SMD production. Accurate 
classification is essential and leads to narrow checking routines 
in the qualification process. As a direct consequence of the static 
decision rules, two main problems arise. For the setup of these 
rule-based test routines, extensive product- and process-specific 
know-how are required. The high overhead of creating and 
maintaining product-specific checking routines, leads to 
increased costs, and severe dependency on expert knowledge, 
impeding the continuous improvement of existing test 
procedures. Static checking routines lead to reduced sensitivity 
with varying conditions, as misclassification rises. 

The aforementioned issues justify the investigation of a deep 
learning approach. A flexible inspection algorithm is expected 
to increase the classification accuracy, reduce optimization 
costs, and lower dependency on expert knowledge. A system 
based on object detection is capable of autonomously detecting 
relevant ROIs for new inspection tasks derived from historic 
data. For this study, the solder joints of an electrical connector 
used in programmable logic controllers are evaluated. A flexible 
computer vision system is developed from the automated 
classification of the extracted grayscale images. 

II. STATE OF THE ART

A. Industrial X-Ray Inspection of Solder Joints 

The quality assessment of a covered solder joint is carried 
out by the utilization of X-ray inspection based on grayscale 
images. The intensity of certain areas of the image varies 
depending on the material being irradiated. This results in 
darkened image areas for metallic material accumulations. 
Automated evaluation of predefined image areas is carried out 
based on these differences in intensity. If a  certain amount of 
pixels within this area exceeds a set threshold, the area is marked 
as insufficient. A confirmation from the operator must be carried 
out. These product-specific test routines are manually created 
and adjusted. 
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Fig. 1: Schematic overview of the human influence on the test result.  

B. Object Detection based on Deep Learning 

Machine Learning based Computer Vision applications have 
gained the highest interest with increasing computing power. 
Besides the image recognition, the object detection and instance 
segmentation are in general exercised for knowledge extraction 
from images. These applications are based on deep learning 
techniques. They use multiple processing layers to learn 
representations from the abstracted data. [3] The feature 
engineering is no longer a manual process, executed by human 
engineers, but learned in the abstraction layers of the network. 
With a sufficiently large combination of layers, functions of any 
complexity can be approximated, using general learning 
techniques.  

One of the most frequently applied types of learning is 
supervised learning. This is an attempt to learn the relationship 
between an input vector and an assigned output. It requires a 
sufficient quantity of labeled inputs to create significant 
relations. An error function computes the difference between the 
given and the predicted outcome to indicate the score during the 
training. With continuous updating of function parameters 
(weights), the result is being optimized towards a minimal error. 
This adjustment is based on optimization methods. Stochastic 
gradient descent is a  commonly exploited method, due to its 
ability to properly generalize on unknown data. It minimizes the 
loss by computing the gradient of the loss curve for training 
examples and updating function parameters accordingly. [4] 

The general architecture of Neural Networks (NNs) consists 
of an input layer, directing the information to the output over a 
generalized linear function (activation function). Intermediate 
layers, hidden between input and output are applied for the non-
linear abstraction of the forwarded information. For updating the 
weights according to the gradient of the error function, the 
information has to be propagated back into the network. With 
the backpropagation algorithm, the loss of every node can be 
computed and the weights can be optimized subsequently. [5] 

A Convolutional Neural Network (CNN) is a specific type 
of feed-forward network commonly used for grid-structured 
data (arrays). So that this type of network can be used for image 
classification or object detection, a mathematical operation 
called convolution is used instead of the conventional matrix-
vector multiplication. The convolution is a cross-correlation 
between the signal and a given filter (feature map) to detect 
structural similarities between both functions. [3] With the 

extension to the two-dimensional space, image data can be 
covered in height and width. For improved generalization and 
reduced computational costs, pooling layers are applied. The 
array is divided into a grid of a set resolution and only certain 
features are transferred. [6] The conclusive fully connected layer 
with multiple 1D layers is the successor of the output layer with 
the predicted classes. [7] Two main reasons, why CNNs show 
superior performance on image data, are a high local correlation 
of associated values and the local invariance of the values, both 
being considered with the specific architecture. [3] 

C. Industrial applications of Machine Learning 

The growing number of industrial applications strengthen 
the suitability and even the superiority over rule-based 
approaches in versatile production processes. Among others, Cia 
et al. [8] present a sophisticated approach for solder joint 
inspection using a cascaded CNN. For the region proposal of the 
ROIs, a  sliding window approach was conducted. For the 
proposed regions, CNN-based quality predictions are executed, 
surpassing conventional SMT solder joint inspection. [9, 10] 
Metzner et al. [11] use a sophisticated approach to challenge the 
false call rate of commercial Automated Optical Inspection 
(AOI) systems via a Neural Network classifier. Within a 
supervised learning approach, static ROIs are defined for the 
relevant inspection areas, by manually labeling the associated 
areas of the images. In a benchmark, the precision of the 
proposed model surpassed commercial AOI systems.  

D. Need for Action in Research 

State of the art X-ray inspection systems demand extensive 
domain expert knowledge for the setup and optimization of 
testing routines. The test programs suffer from insufficient 
classification accuracy, particularly under varying conditions. 
Subsequent false call reclassification demands high personnel 
retention. Current research efforts have mainly focused on 
training Neural Networks with predefined regions of interest.  

This contribution is to research if deep learning-based 
algorithms improve the generation of testing routines regarding 
flexibility and classification accuracy of SMD solder joints. 
Grayscale images of the solder joints of an electrical connector 
used in programmable logic controllers are evaluated. The 
classification is trained and tested on multiple types of solder 
joints and error types. In a subsequent approach, an object 
detection is trained for the autonomous detection of solder joints 
with no predefined regions of interest. It is evaluated if the 
developed concept applies to the existing manufacturing 
infrastructure, regarding prediction accuracy and computation 
time. The used training images are generated as a by-product in 
a real production environment. 

III. SYSTEM DESIGN 

For the realization of the tests, the concept shown in Fig. 2 is 
proposed. After the inspection process of the X-ray machine, the 
result images are fed into the inspection algorithm, running on 
an industrial computer. After the detection, the result is 
transferred to the test station, where it can be further processed, 
depending on the outcome. The setup allows a direct inspection 
of components marked as defective by the test routine. Only 
marked components are evaluated and considered in the learning 
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process so that the algorithm has to distinguish between false 
calls and true failures. 

A. Data acquisition and preparation 

On the investigated PCB, two functionally different types of 
solder connections are defined. These connections are 
subdivided into six categories for the detection, according to 
their geometry. Each side of the board contains 79 or 52 solder 
joints, depending on the current component. 

For the X-ray inspection, an Omron VT-750 X-ray machine 
is conducted. The imaging system is based on a slice imaging 
method using transversal computer tomography (CT). The 
assembled PCB is positioned between the X-ray tube and the 
detector, which are horizontally circulating the PCB. [12] The 
generated image data consists of 65 8-bit grayscale images 
vertically varying over the inspected product. One image layer 
consists of 623x483 pixels for the inspected component. 

The image data is extracted as *.rec-files, containing the 
multilayer pixel information. In combination with the provided 
meta-data file, containing information about layers and 
resolution, the information can be transferred into an array 
structure of the form 623x483x65. In the second step of the data 
preparation, the array is reduced to one layer, selected as 
sufficient by the inspection system after the quality assessment. 
It is ensured that the same database is used for the training as 
seen and evaluated by the operator. The feature space is reduced 
to a two-dimensional vector. 

Subsequently, the positioning of the solder connections on 
the board is defined. A self-developed graphical user interface 
(GUI) was conducted for the position-labeling and type 
categorization of the solder connections. This step is performed 
each time a new connector is trained.  

For the labeling of the individual solder connections, the 
database of the in-plant quality system is utilized: The true label, 
assigned by the operator in the confirmation process, is directed 
to the system, overruling the X-ray inspection result if required. 

The pin-based evaluation result is merged with the 2D image 
array by a unique identifier. For the training 6387 images are 
available.  

To counteract potential overfitting, data augmentation is 
executed, to synthetically create a variance within the image 
data. This includes rotation of the image (90° - 270°), relocation 
of the ROIs, and insertion of interfering elements. For the 
training of the image classification, the data is split in the 
proportions 70 % (training), 20 % (validation), and 10 % 
(testing). Due to the high yield (> 99.99%), a class imbalance is 
created. To prevent a model, biased towards one class, class 
weights are introduced. According to the proportion of a class in 
the dataset, a  weight is added to relativize the effect of this class 
during training. The minority classes are rated > 1, whereas the 
majority class is rated < 1. The application is written and 
executed in Python (v3.7). The used TensorFlow-GPU (v1.15) 
backend is addressed via Keras (v2.0). [13, 14] 

B. Test Setup 

In Table I. the selected test setup investigated in this work is 
shown. A distinction is made between the detection method and 
the image section used (cut out, full image). Consequently, the 
required classes and the available data for the training are 
adapted. The first training and testing (A) are done on cut out 
areas of the images. The defined ROIs are derived from the 
labeling process. Further tests (B-D) were carried out on the 
complete images. The second dataset (B) includes two classes, 
functional pins, and open solder connections. For the third 
dataset (C) functional pins and solder bridges are trained. In the 
last image classification (D) the tests are merged to distinguish 
functional connections from general defects.  

In the training of the object detection, the different pin types 
occurring on the component are classified. Besides, the error 
types ‘open solder’ and ‘solder bridge’ are included for the 
detection. 
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Fig. 2: Data flow in the proposed, CNN-based system design
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TABLE I. EVALUATED TEST SETUPS 

Test 
Set 

Test Setups 

Detection method Image type Classes 
Class 

distribution 

A Image classification 
Cut out solder 
connections 

2 5560/827 

B Image classification 
Complete 

image 
2 562/728 

C Image classification 
Complete 

image 
2 562/326 

D Image classification 
Complete 

image 
2 562/1054 

-- Object detection 
Complete 

image 
8 526/1054 

C. Image Classification 

As a suitable CNN architecture for the image classification, 
the VGG-16 is chosen. [7] Compared to AlexNet, the kernel size 
is reduced to 3x3 over multiple layers. With the increased 
number of non-linear layers, more complex structures can be 
learned. [15] The pre-trained convolutional block of the VGG-
16 is utilized. As described earlier, the local correlation of 
associated values within images and the local invariance of the 
values allow the training of a generic feature extractor. It is 
suitable for edge and structure detection. [3, 15] After the 
convolutional block, the compressed data is then transformed 
into a one-dimensional vector (flatten layer) and transferred to a 
multi-layer perceptron (MLP) for classification. In three fully 
connected layers, the output of the convolutional part is 
converted into a 1x1x4096 vector to be interpreted by the last 
dense layer for the classification. Two output neurons are 
defined for the final classification. 

In the input layer, the images are resized to a vector of the 
size 224x224x3. Since X-ray inspection generates grayscale 
images, which corresponds to a width of one, two channels of 
the images used are left empty. The MLP is replaced with a two-
class soft matrix, which means that the predefined weights are 
lost. Binary cross-entropy is chosen as the cost function, as a 
two-class categorization is required. Weight adjustment is 
carried out by the SGD optimizer, according to the loss 
calculated by backpropagation. For the training a learning rate 
of η = 0.0001 is chosen. The learning rate regulates the 
convergence of the weights over the epochs. The model is 
trained over 100 epochs. 

For Training A an accuracy of 98 % could be achieved after 
4 epochs on the validation set (Fig. 3). The similar learning curve 
for both sets indicates minimal overfitting in the process. During 
Training B similar indicators were observed (accuracy = 98 %). 
In Training C, the increase in accuracy of the training and 
validation set is significantly reduced in comparison to Training 
A and B. After 60 epochs the accuracy exceeds 90 %. This is 
considered to be a result of the higher variance in the occurrence 
of errors. Training D showed improved performance compared 
to Training C (40 epochs > 90 % accuracy), indicating an 
enhanced learning effect due to the higher volume of training 
data. 

Fig. 3: Accuracy and loss for the training and the validation of the image 
classification (A, C, D). 

D. Object Detection 

As a modification to image classification, an object 
recognition, taking the location under consideration is evaluated. 
A Mask-RCNN architecture is conducted. [16] With this 
architecture, the possibility of an instance segmentation is given 
but is not considered in this work. [17] The according layers are 
removed. A ResNet101 architecture is used as a backbone for 
the feature extraction. [18] 

As eight different objects are targeted with the detection, 
categorical cross-entropy is chosen as the cost function. The 
SGD optimizer is regulated by a learning rate of η = 0.0001. Due 
to the high computing complexity, the batch size is reduced to 
one, and the epochs for the training set to 5. The previous tests 
with the VGG-16 architecture have shown, that after only a few 
epochs an accuracy of over 90 % could be achieved. 
Consequently, the reduced number of epochs is considered 
sufficient. For the evaluation, the mean average precision (mAP) 
is used. The loss curves of the training and validation data fall 
from 1 to 0.5 after the first epoch and converge towards zero 
with a negative gradient in the following epochs, as shown in 
Fig. 4. 
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Fig. 4: Loss for the training and the validation of the object detection and the 
according object classes. 

E. Evaluation of the Results 

For the evaluation of the trained model, the confusion 
matrices are shown in Fig. 5. Misclassification by the model 
occurred in five of 647 cases for Test A (cut out pin images). 
The misclassification of true failures commonly represents the 
most cost-intensive decision in production. With the adaption of 
the discrimination threshold, the False Positive Rate (FPR) can 
be reduced to zero, resulting in a decreased True Positive Rate 
(TPR) of 0.95, as shown in the receiver operating characteristic 
(ROC) curve (see Fig. 6). The classification of Test B to D show 
a similar proportion but result in a stronger decay of the TPR for 
FPR of zero (Test C). 

The object detection models each achieve an average mAP 
score of 0.99, with an intersection over union (IoU) threshold of 
0.5. For the classification of the functional solder connections, 
the confidence score varies between 0.98 – 1.00 for functional 
solder connections and 0.96 – 0.99 for bad solder connections. 
The slight difference in favor of the functional pins could be 
attributed to the increased variance of errors (open solder vs. 
solder bridge). To ensure that an unexecuted classification is not 
resulting in an unclassified solder connection, a product-related 
quantity of objects must be identified for a positive test result. 

Fig. 5: Confusion matrices of the testing of image classification (Test A-D) 

Fig. 6: ROC curves for the testing of the image classification (Test A-D) 

F. Transferability of the model 

The evaluation of various images showed promising results, 
regarding the transferability to further components. The model 
was able to identify objects as solder connections of 
components, which have not been included in the training set. 
The fully connected layer of the model can learn a generalized 
concept of a solder connection, as shown in Fig. 7. On 50 test 
images of an unknown component, the model reached an 
average mAP score of 0.98. The application of a generalized 
model, based on a similar training, evaluating multiple products, 
could enable a more time-efficient and flexible generation of test 
programs for X-ray detection. 

Fig. 7: Concept for the transferability of the evaluated model.  
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IV. CONCLUSIONS AND FUTURE RESEARCH

The application of different CNN architectures, for the 
detection and classification of different solder connections and 
error types in grayscale X-ray images, could successfully be 
evaluated. The proposed system shows superior precision 
compared to the commercial X-ray inspection test routines. The 
dependence on domain-specific know-how for the generation 
and optimization of the test-routines could be reduced with the 
CNN-based classification approach. The application of an object 
detection algorithm shows promising results, regarding the 
autonomous generation of test routines for the X-ray inspection. 
The model was able to perform cross-component detections of 
solder connections. For a reliable integration of the system, 
improved classification accuracy is still demanded. The 
sufficiently large dataset required for this purpose is one of the 
main challenges to be addressed. Further research activities will 
investigate the application of the proposed supervised 
techniques in combination with unsupervised techniques, to 
focus on the recognition of unknown failure types and eliminate 
the prerequisite of a comprehensive dataset. 

Also, there is still a  dependency on the selection of the 
appropriate focus level of the image files made by the machine, 
which requires further development of the proposed solution. A 
promising approach could be the integration of a multilayer 
feature extractor. Moreover, the image data could be extended 
by a further dimension, increasing the utilized information, as 
3D information is provided by the image data generated by the 
X-ray inspection. 
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