

ALD Atomic Layer Deposition for space applications

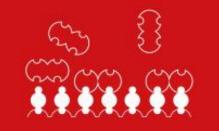
PCB-Assembly protection

Dr. Marko Pudas 10/2018

Workshop on High End Digital Processing Technologies and EEE Components for Future Space Missions, 1 October 2018, ESTEC, The Netherlands

ALD – Atomic Layer Deposition

- Is a batch coating process with surface chemistry
- Wide range of material, e.g. Al₂O₃, TiO₂, M-, M-C,M-N
- Typical; **100 nm** up to ~0,5 μm
- True 3D down to nanopores, no pinholes
- Vacuum deposition process
 - Substrates are degassed & heated (degas analyzed)
 - ~40 C **125C -** 400 C
- Mature IC manufacturing process
- Extremely repeatable in thickness & quality over time
- Chemically adhesion; will not peal off/flak
 - Dense,
 - Pinhole- and defect-free films
 - Digitally repeatable process


THE PRINCIPLE OF ALD

Introduction of molecules containing element A.

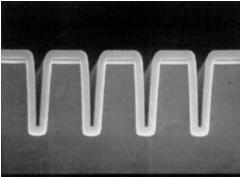
Adsorption of the molecules on the surface.

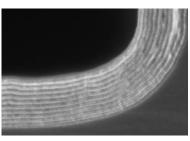
Introduction of molecules containing element B and reaction with element A on the surface.

Completion of one monolayer of compound AB.

Repeat cycle till desired film thickness is reached.

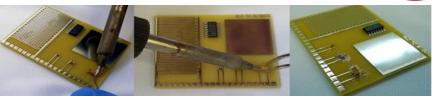
Benefits of ALD for different areas on space application


• <u>Tin whiskers mitigation;</u> Main objective for ongoing ESA-funded activity

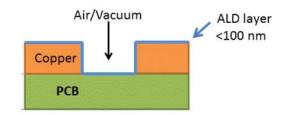

THIN FILM GROWTH BY CONSECUTIVE ATOMIC LAYERS

- <u>Reworkable:</u> Components can be changed and the substrate re-coated
- Corrosion protection; ALD or PVD+ALD most durable corrosion resistance; 670 h/salt spray
- Excellent gas & moisture barrier; 4 x10⁻⁵ g/m²/d, (PEN/PET ~10⁻¹ g/m²/d);
 - Can be used for Sulfur & Creep Corrosion barrier, now used for coins; Creep corrosion or similar test needs?
 - <u>Prevent oxidation</u> (of e.g. mirrors)
 - Degas COTS plastic packages / boards -> ALD coat -> No moisture intake, nor release
 - Tests to be carried out soon at ESTEC; any proposal for components and requirement?
 - Prevent gas leak from fuel/gas containers
- Optical filters, mirrors-layers, black-surfaces (~100 nm thickness)
- Possible mitigation of surface charging with (weakly) conductive transparent conformal coating

Widely applied for e.g. in IC industry, corrosion protection, moisture barriers...



PCBA protection by ALD


Conformal PCB assembly coating with a difference

- Blocks tin whiskers*
- Excellent moisture (&gas) barrier
- Corrosion barrier even against some liquids
- Can be reworked
- Can be patterned

- and in some cases not needed for patterning for contacts
- Can be combined with other methods
- Ensuring high surfaces insulation resistivity, no RF changes
 - Obtain higher environmental reliability with even while decreasing conductor spacing (decreased side)
 - With <u>"~0 added weight"</u>

* Tin whiskers growth prevented in model substrates, see later

Atomic Layer Deposition for conformal coating of PCB assemblies and components

Cesa - funded; Evaluation of Atomic Layer Deposition (ALD) Conformal Coating to Mitigate Tin Whiskering - 4000113005/14/NL/PA, 2015

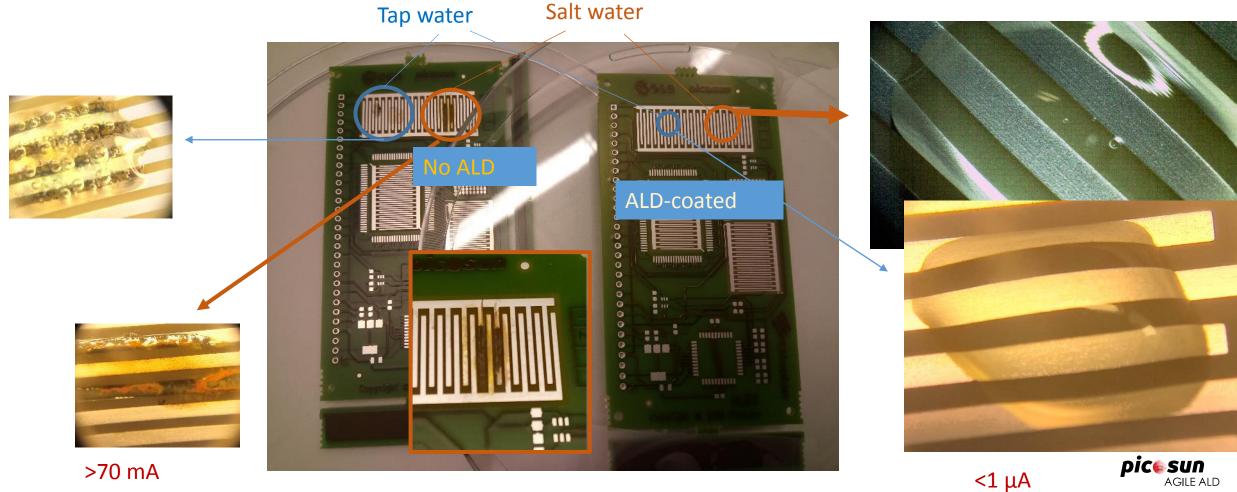
- Testing and validation planning of ALD for complete PCB(A) conformal protection
- 1st stage has demonstrated *
 - Mitigation of tin whiskers
 - **Conformal** applicability ALD for PCBA, >80 V breakthrough voltage;
 - even higher voltage with increased layer thickness; Reworkable
 - Deposition and testing **processes** were evaluated; best in use, ALD tool available

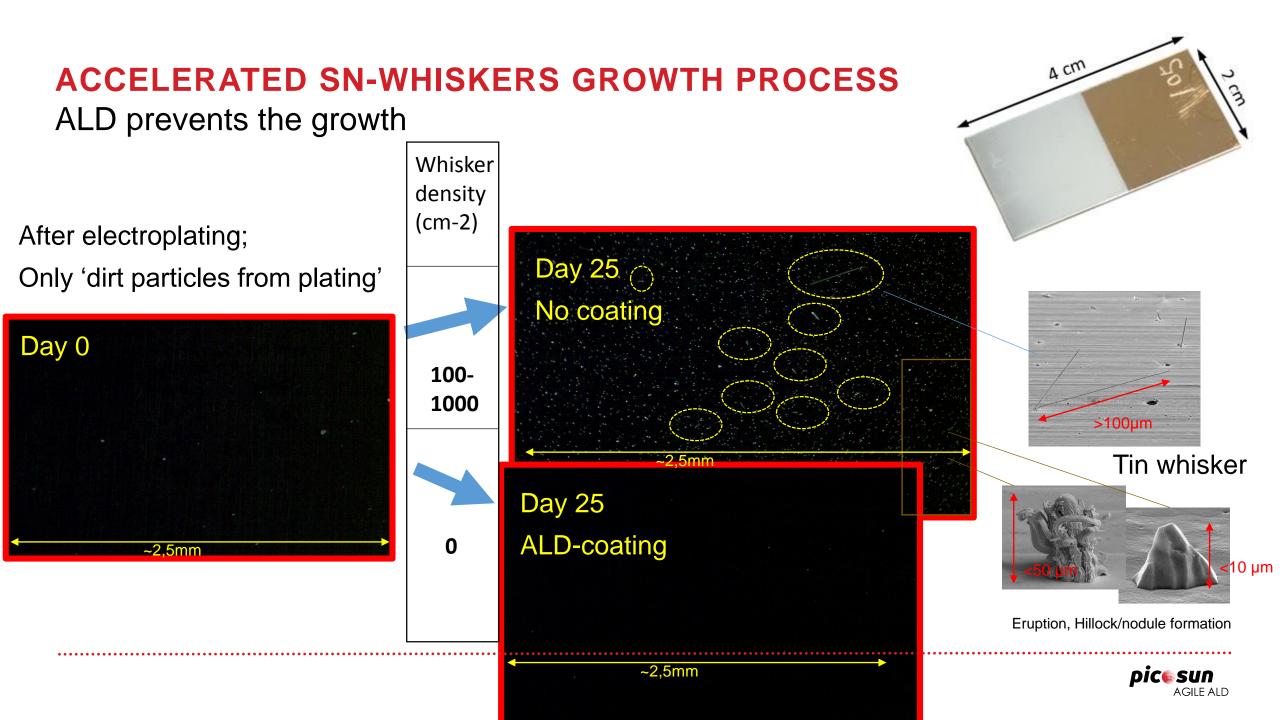
- 2nd stage started 1/2018 *
 - Verification of 1st stage experiment & Route planning to establish validation of ALD coating for suppliers
 - Testing of ALD-encapsulation of plastic packages for space use and increased lifetime in ambient
 - Test boards with relevant space grade AND off-the-shelf components (polymer packages)

What are your critical components to be validated? Your required test board?

Parallel B2B projects have stated for automotive, medial...

* In collaboration with Loughborough Univ. and Poltronic




ESA-funded; Atomic Layer Deposition for Tin Whiskers Mitigation and Cure on Space Electronics Manufacturing (4000122745/18/NL/LvH/gp), 2018

BIASED CORROSION

Drop of salt water on *Imm*-Ag coated electrodes, 3.3v bias

IC SUN AGILE ALD

How to do it

Roadmap

- Tin whiskers mitigation preliminary demonstrated and evaluated, now repeating experiment using a wider test matrix
 - Equipment available
- Plastic package encapsulation now demonstrating
- 3rd Phase; Validation
 - Validation planned, expected to start in ~1 year
 - Real (Flight representative) PCBs for validation proposals for boards / components?
 Interested partners?
 - Parallel use for down to earth applications (reliability), aka. industrial drivers – We are searching partners!
- Demonstration / development now in process; next (e.g. EMS) collaborator, who can provide the coating service (should be requested by 'OEM')

Tool examples **P300**; 27 x 27 x 27 cm3

(other, **P1000**; diam 60cm, h70 cm)

Quick questions?

More detailed discussion & material tomorrow 2nd Oct. (pref. before noon)

Marko.Pudas@Picosun.com

Thank you!

Fax:

MAIN HEADQUARTERS **Tietotie 3** Micronova building FI-02150 Espoo Finland

+358 50 321 1955 Phone: +358 9 297 6116 E-mail: info@picosun.com Web: www.picosun.com

