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Abstract 
This paper proposes the integration of pulsed photonic sintering into multi-material additive 
manufacturing processes in order to produce multifunctional components that would be nearly 
impossible to produce any other way. Pulsed photonic curing uses high power Xenon flash 
lamps to thermally fuse printed nanomaterials such as conductive metal inks. To determine the 
feasibility of the proposed integration, three different polymer additive manufacturing materials 
were exposed to typical flash curing conditions using a Novacentrix Pulseforge 3300 system. 
FTIR analysis revealed virtually no change in the polymer substrates, thus indicating that the 
curing energy did not damage the polymer. Next, copper traces were printed on the same 
substrate, dried, and photonically cured to establish the feasibility of thermally fusing copper 
metal on the polymer additive manufacturing substrates. Although drying defects were 
observed, electrical resistivity values ranging from 0.081 to 0.103 Ω/sq. indicated that high 
temperature and easily oxidized metals can be successfully printed and cured on several 
commonly used polymer additive manufacturing materials. These results indicate that pulsed 
photonic curing holds tremendous promise as an enabling technology for next generation multi-
material additive manufacturing processes.  
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1 Introduction 
The phrase "multi-functional additive manufacturing" describes processes capable of 

incorporating a variety of material types within a component such that the resulting component 
has a higher degree of functionality than would normally be found in a purely mechanical part. 
For example, a process might print actuator materials that connect moving components in an 
assembly. Embedded heaters might be printed that dynamically modify mechanical properties of 
a material. Strain gauges printed on or within a component could provide data for structural 
health monitoring. 

Relatively few commercial systems are able to spatially control material composition 
throughout a component at this time. A comprehensive literature survey of multi-material 
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additive manufacturing research (Vaezi et al., 2013) suggests that multi-material additive 
manufacturing is still primarily in the research domain. As multi-material AM research 
approaches are incorporated into commercially available technologies in the coming years, the 
integration of metal, polymer, and even ceramic materials within the same component may 
ultimately prove to be the most transformative aspect of additive manufacturing technologies 
with respect to traditional manufacturing techniques. Engineers will be able to optimize 
functional performance of components in ways never before envisioned. 

Some of the earliest embodiments of multi-functional additive manufacturing involved the 
integration of electronics on or within an additively manufactured component. For example, 
Periard et al. (2007) used a syringe paste extrusion system to demonstrate conductive silver ink 
deposition for fabrication of demonstration objects such as a flashlight and a blinking LED 
circuit. Johnson et al. (2011) direct-write printed multiple layers of materials, including 
photopolymers and silver inks, to produce a MEMS micropump suitable for delivering drugs 
to the inner ear. Lopes et al. (2012) describe a hybrid additive manufacturing configuration in 
which an nScrypt direct-write micro- dispensing nozzle was integrated with a 3D Systems SLA 
250 stereolithography system to produce items in which conductive silver traces are embedded 
within the SLA photopolymer resin. 

These three examples help demonstrate the potential of multi-material additive 
manufacturing technologies. One important item to note, however, is that the overwhelming 
majority of multi- material additive manufacturing research involving both polymers and 
metals in the same part use silver as the metallic material. The simple reason for this is that 
metals and polymers generally have incompatible processing temperatures. Silver nanoparticle 
inks and pastes, however, can be cured at relatively low temperatures (<150C) without any need 
for protective or reducing atmospheres. 

While silver is very well suited as an electrical conductor material, technologies capable of 
processing a wider range of metal and polymeric materials within the same component are needed if 
the promise of multi-functional additive manufacturing is to be realized. Technologies used in the 
printed electronics industry have much to offer in this regard. Printed electronics often require metallic 
electrode layers deposited onto polymeric substrates such as polyethylene terephthalate (PET), 
polycarbonate, or polyimide (Kapton). While silver is frequently used for the reasons mentioned 
above, recent as-yet published research with pulsed photonic curing of higher temperature metals such 
as copper, stainless steel, and nickel from the author’s lab shows promise for applications in multi-
functional additive manufacturing. 

Pulsed photonic curing (Schroder et al., 2006) is a relatively new process in which printed 
nano-inks are cured or sintered using flashes of broad spectrum light energy from Xenon lamps. 
Functional inks are typically printed on a substrate using screen printing, flexography, inkjet 
printing, or other suitable processes. The printed film passes beneath one or more high power 
Xenon lamps, and the power, pulse length, number of pulses, and pulse frequency are chosen to 
optimally cure or sinter the material without thermally damaging the bulk substrate material 
(Figure 1). 
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Figure 1:  Pulsed photonic curing 

 
A key aspect of pulsed photonic curing is the well-known phenomenon of melting/sintering 

point depression in nanoparticles described by the Gibbs-Thomson equation (Makkonen, 2000) 
 

 

 is the depressed melting temperature of nanoparticles of diameter , is the material’s 
bulk melting temperature,  is the solid-liquid interface energy,  is the bulk heat of fusion, and 

 is the density of solid material. As  gets below approximately 50 nm, dramatic reductions in 
the thermal processing temperature are observed. This makes it possible to rapidly fuse high 
temperature metals on low temperature polymers at very high speeds. For example, Farnsworth et 
al. (2012) describe the use of photonic curing for printed RFID tags as well as thin-film transistors 
on polymer substrates. Reinhold et al. (2013) describe recent advances in high speed pulsed 
photonic curing of copper oxide inks printed on low temperature polymer or even paper substrate 
materials for printed electronics. The fact that the Xenon lamps emit a broad spectrum of energy is 
also particularly attractive due to the fact that each potential functional material of interest has 
specific absorption characteristics. Pulsed photonic curing is therefore very flexible in terms of the 
range of materials that can be thermally processed when compared with single wavelength sources 
such as scanning lasers.  

While pulsed photonic curing has been explored for flexible electronics on Kapton, PET, and 
paper substrates, this paper proposes its use as the energy source in multi-material additive 
manufacturing systems capable of printing both polymer and metal materials within the same 
component. Although a handful of researchers have investigated the use of silver conductive ink on or 
in 3D printed polymer parts, we are unaware of any efforts to date that investigate the feasibility of 
integrating higher temperature reactive inks within a 3D printed component. We are also unaware of 
any efforts to use high speed broad spectrum curing within an additive manufacturing process. Lastly, 
the potential for thermally or photonically induced damage to the polymer during photonic curing has 
never been studied. 

 
In order to assess the technical viability of the proposed approach, two fundamental 

questions must first be answered: 
 

1. Is  it  possible  to  fuse  printed  high  temperature  metal  inks  on  commonly  used  
additive manufacturing polymers? 

2. Are commonly used additive manufacturing polymers damaged by the incident 
energy?  
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The remainder of this paper is dedicated to answering these two questions. 
 

2 Materials and Methods 
To determine whether or not energy from the Xenon flash lamps cause damage to the 

polymer substrates, sample substrate specimens were prepared for the stereolithography (SLA), 
selective laser sintering (SLS), and fused deposition modeling (FDM) processes. For the SLA 
process, DSM Somos NanoTool substrate specimens were produced on a 3D Systems Viper 
SLA machine. For the SLS process, PA 2201 (polyamide) substrate specimens were produced 
on an EOS P730 system. Lastly, ABSPlus substrate specimens were produced on a Dimension 
Elite system from Stratasys. It would be impractical to test every polymer additive manufacturing 
material; however the three process/material combinations chosen for this evaluation are 
reasonably representative of an extremely large percentage of polymer additive manufacturing 
materials used in practice. 

One specimen of each material type was set aside as an "as processed" control sample. 
One additional specimen of each type was then passed through a Novacentrix Pulseforge 3300 
machine (Figure 2) such that the bare polymer would be exposed to the incident energy. The 
PulseForge 3300 tool is capable of delivering peak powers as high as 100 kW/cm2 in pulses as 
short as 30 microseconds. For this work, each sample was exposed to two 270 V pulses having a 
duration of 1370 microseconds at a pulse frequency of 2.8 Hz. These pulse conditions are 
representative of what a polymer substrate would be exposed to when copper ink is thermally 
cured via this process. The pairs of as-processed and photonically cured samples were then 
examined via FTIR analysis using a BioRad Excaliber FTS 3000 FTIR with 4 cm-1 resolution to 
determine whether any appreciable changes in the molecular structure could be detected. The use 
of FTIR for this purpose was suggested by Celina et al (1997) who conducted a study in which 
FTIR spectra for a variety of thermally processed polymer specimens were found to be good 
indicators of thermally induced damage (or lack thereof).  

After bare substrates were examined for potential adverse effects, Novacentrix Metalon ICI-
021 aqueous dispersion copper oxide ink with 62% solid loading fraction was screen printed onto 
new sets of additively manufactured polymer substrates. A 203 mm x 254 mm (8 in. x 10 in.) 
aluminum frame was used with a 280 mesh screen and a wire diameter of 25.4 μm (0.001 in.). 
Screen printing was specifically used, as it allowed large numbers of samples to be printed 
almost simultaneously so that every sample could be printed, dried, and then cured in the same 
amount of time before conductivity readings were taken. This is important, as factors such as 
drying time have been known to influence conductivity for many ink formulations. 
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Figure 2:  Novacentrix Pulseforge 3300 
 
 

The geometry shown in Figure 3 was used to allow conductivity measurements of cured 
samples to be taken. All samples were oven dried for 3 minutes at 150 °C prior to photonic 
curing. They were then photonically cured on the Novacentrix PulseForge 3300 using the same 
pulse settings as previously described for the bare substrates. Copper is the dominant conductive 
circuit board material, hence it makes the ideal test case for multi-functional additive 
manufacturing that includes both metal and polymer materials within the same component. 

 
Figure 3:  Conductivity coupon geometry (units: mm) 

 

3 Results 

3.1 FTIR Results 
As described in Section 2, FDM, SLS, and SLA samples were passed through a PulseForge 

3300 under the same processing conditions used to cure printed copper ink. This was done to 
determine whether or not the energy from the Xenon lamps is sufficiently high to cause damage to 
any of the most commonly used AM polymers. 

Figure 4 shows the FTIR spectra for as-printed and photonically cured PA2201 
(polyamide) processed in the EOS P730 system. Figure 5 shows the FTIR spectra for as-printed 
and photonically cured ABSPlus material processed in the Dimension Plus FDM system. 
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Lastly, Figure 6 shows the FTIR spectra for as-printed and photonically cured NanoTool resin 
cured in the 3D Systems Viper SLA machine. In all three graphs, a dashed line represents 
response of the as-printed polymer, and the solid line represents the response of the photonically 
cured material.  

In the cases of the white PA2201 (Fig. 4) and white NanoTool resin (Fig. 6), the two curves are 
almost perfectly superimposed. This provides one indicator that the processing conditions used to 
cure copper caused little, if any, appreciable damage to these commonly used additive 
manufacturing polymer materials. ABS plastic used in FDM machines is available in a variety of 
colors including black, white, red, green, blue, yellow, and green. Black ABS was intentionally chosen 
for this study due to the case that it represents a “worst case scenario” in the sense that it will absorb 
nearly all wavelengths emitted by the Xenon lamps and would therefore be most likely to show 
thermal damage. As seen in Figure 5 for the black ABS, there is a slight downward shift in the spectra 
between roughly 500-1300 cm-1. Referring to the black ABS sample seen in Figure 7, one can detect a 
slightly duller appearance of the black ABS that has been photonically cured (left side). The FTIR 
spectra and slight visual difference suggest slight thermal damage at the surface of the dark black 
material.  
 

 
 

 
Figure 4:  FTIR analysis of PA2201 samples produced in an EOS P730 SLS machine 
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Figure 5:  FTIR analysis of black ABSPlus samples produced in a Dimension Elite FDM machine 

 

 

Figure 6:  FTIR analysis of NanoTool resin samples produced using a 3D Systems Viper SLA machine 
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3.2 Photonic Curing of Copper on Polymer Substrates 
Copper oxide paste was screen printed, dried, and photonically cured on polymer substrates 

according to the methods described Section 2. A minimum of 6 samples were prepared for 
each substrate type in order to provide statistically useful results. Figure 7 shows FDM and SLS 
samples with both as-printed (dark color) and photonically cured (copper color) material. 
This particular conductive ink uses copper oxide nanoparticles and flake along with a 
proprietary reducing agent. Upon passing through the photonic curing system, the non-
conductive copper oxide reduces to conductive copper. 

After photonic curing, each sample’s resistivity was measured using a Fluke 115 multimeter. 
Each trace was 50 mm long and 1 mm wide, giving a conductive length of 50 squares. Average 
resistivity of cured copper on the ABSPlus samples was 0.1048 ± 0.0023 Ω/sq. Average 
resistivity of cured copper on PA2201 (nylon) was 0.0976 ± 0.0013 Ω/sq. Average resistivity of 
cured copper on Somos NanoTool was 0.0813 ± 0.0070 Ω/sq. In separate testing unrelated to 
this research, conductivities of 0.035-0.050 Ω/sq have typically been obtained with the same 
screen printed copper paste on paper substrates. While the resistivity on the three additive 
manufacturing polymers is not as low as those seen with paper substrates, these values are 
generally quite acceptable for general purpose applications in which conductive traces connecting 
power sources, LED’s, small motors, and other components are used. 

 
Figure 7: Screen printed copper (dark color) and photonically cured copper (bright color) on 

polymer AM substrates 
 

4 Discussion 
 
When samples are photonically cured, the pulse power, pulse duration, frequency, etc. are 

controlled in order to produce the desired surface heating without overheating the substrate. Simpulse 
is a one-dimensional heat transfer simulation module that comes with the PulseForge tool that allows 
users to simulate the pulsed photonic curing process. It includes surface convection and radiation 
terms. Users specify the material being cured, the substrate material(s), and the thicknesses of each 
material. Thermophysical material properties including mass density (ρ), conductivity (κ), and specific 
heat (cp) of each material must also be specified. The user then specifies the photonic curing 
processing conditions to be simulated. These include the pulse voltage, pulse duration, number of 
pulses, and pulse frequency. SimPulse then simulates the heat profile through the thickness of the 
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stack. 
Figure 8 shows results of a Simpulse study for a 30 μm thick layer of Novacentrix Metalon copper 

oxide nanoparticle ink on top of 3 mm thick ABS plastic. This approximates the screen printed copper 
oxide and FDM ABS plastic thicknesses for the physical samples used in experimental testing. The 
mass density (ρ), conductivity (κ), and specific heat (cp) were taken to be 6.00 g/cm3, 0.2 W/m-K, and 
448 J/kg-K respectively for the printed copper oxide ink, and 1.04 g/cm3, 0.17 W/m-K, and 1400 
J/kg-K respectively for ABS plastic. The photonic curing process parameter values of two pulses at 
270 volts/pulse, 1370 msec per pulse, and a pulse frequency of 2.8 Hz were then specified. After 
inputting the above settings into SimPulse, estimated time versus temperature profile through the 
thickness of the stack was generated. Figure 8 shows temperature versus time at 2 locations. The red 
(top) curve shows temperature on the top surface of the printed copper oxide trace, while the blue 
(lower) curve shows temperature on top of the ABS plastic. Two important observations can be made. 
The copper oxide ink exhibits very rapid, though brief heating to just over 600°C. The ABS plastic, 
however, never exceeds 150°C. Even at peak temperature, the ABS cools down to below 100C within 
approximately 25 msec. Although Simpulse is based upon a relatively simple model for temperature 
estimation only, these results tend to add further evidence beyond FTIR measurements that intense, 
but brief, bursts of broad spectrum energy have considerable potential for high speed thermal 
processing of high temperature materials on or in polymeric 3D printed components.    

 

 

Figure 8: Temperature versus time for photonically cured copper on ABS substrate 
 
The resistivity values reported in Section 3.2 are quite acceptable for a wide range of printed 

electronics applications, and the average resistivity for the ABS and PA2201 samples were 
reasonably close. It is worth noting, however, that considerably greater variability in resistivity was 
seen in the PA2201 samples than with the ABSPlus. Upon closer inspection of the samples via 
optical microscopy, pronounced differences between the samples were observed. Figures 9, 10, and 
11 show as-printed, dried, and photonically cured copper on the ABSPlus, PA2201, and Nanotool 
substrates respectively. Figures 9(c), 10(c), and 11(c) are intentionally arranged from highest to 
lowest electrical resistivity for purposes of qualitative visual comparison. 

In Figure 9, the printed tracks associated with extruded black ABS filament are plainly visible. 

Top of Copper 

30 μm below 
ABS Surface 
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It is readily apparent that the copper formed cracks along the gaps between the printed tracks. It 
can also be seen that the dried copper trace is considerably wider than the 1 mm wide track 
produced by the screen printer. The saw tooth pattern shows where copper wicked into the gaps 
between printed tracks during drying. In some areas, the drying cracks span nearly the entire 
width of the printed copper trace and clearly explain the lower conductivity compared with the 
SLS and SLA samples. 

A different phenomenon is seen in Figure 10. Surfaces produced in the Selective Laser 
Sintering process have a grainy, but solid, surface texture. Although the SLS samples do not 
suffer from long continuous drying cracks as seen in the FDM samples, a multitude of shorter 
randomly oriented drying cracks that disrupt the conductive path are plainly visible. 

Figure 11 shows a micrograph of cured copper on the Somos NanoTool substrate. This copper 
had the lowest electrical resistivity, or conversely the highest electrical conductivity, of all 
samples. While the cured material is sponge-like due to gas evolving from the copper oxide 
reduction reaction during curing, it does not have the macro-scale cracks that are readily visible 
in the FDM and SLS samples. It is worth noting that the Somos NanoTool resin has 
considerably lower coefficient of thermal expansion than the other two materials studied. 
Specifically, the coefficients of thermal expansion are given as 88.2 μm/μm/°C, 62.3 μm/μm/°C, 
and 31.4 μm/μm/°C for ABSPlus, PA2201, and Somos NanoTool data sheets respectively. Thus 
differences between the thermal expansion of the substrate and printed ink during pulsed photonic 
curing is considered to play a significant role in the formation of microcracks. Nevertheless, sheet 
resistivity values ranging from 70-105 mΩ/sq is reasonable for a broad range of applications.  

 
 

(a) (b) (c) 
Figure 9: Micrograph of (a) as-printed, (b) dried, and (c) photonically cured copper on black ABSPlus 
substrate  
 
 

(a) (b) (c) 
Figure 10: Micrograph of (a) as-printed, (b) dried, and (c) photonically cured copper on PA2201 substrate 
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(a) (b) (c) 
 

Figure 11: Micrograph of (a) as-printed, (b) dried, and (c) photonically cured copper on SLA Nanotool 
substrate 

 

5 Summary and Conclusions 
This paper explores the use of pulsed photonic curing as a  potential path to 

multifunctional 3D printing in which a broad range of material types may be combined within 
the same component. The first objective of the paper was to determine whether or not pulsed 
photonic curing damages the polymer structure. FTIR analysis did not indicate any appreciable 
change in the polymer structure. Furthermore, a simple 1-D thermodynamic simulation model 
supports the notion that although the copper oxide nanoparticles achieve high temperatures for 
brief amounts of time, the polymer substrate temperature does not exceed approximately 150 °C 
and is only above roughly 100 °C for on the order of 25 msec.  

The second objective of the study was to observe behavior of photonically cured high 
temperature material (copper in this case) on three representative polymers – an amorphous 
thermoplastic (ABS), a crystalline thermoplastic (polyimide), and a UV curable resin (NanoTool). 
Electrical resistivity ranged from 0.007 to 0.105 Ω/sq for the three materials. Micrographic 
examination of the copper on each of the three substrate materials revealed significant 
differences. The black ABS substrates produced via the FDM process exhibited substantial 
wicking and cracking of the copper paste along the gaps between adjacent printed traces. This 
would indicate that post processing of FDM components to smooth and seal the surfaces is 
advised. For instance, solvent vapor smoothing with acetone is a simple method that is often 
used. The polyamide SLS substrate did not exhibit macro cracking of the same magnitude as the 
ABS samples, however, a large number of smaller cracks were visible which would adversely 
affect conductivity. The very smooth SLA Nanotool substrates had the lowest resistivity of all 
samples. That material also had the lowest coefficient of thermal expansion. 

In summary, this study suggests that pulsed photonic is very promising with respect to 
multifunctional 3D printing. A system is currently under development in which multi-material 
digital printing is integrated with the photonic curing system to produce multifunctional 3D 
printed components. In parallel with this development work, efforts are also underway to 
develop a database of material compatibilities that designers will refer to when selecting 
multiple materials that are incorporated into a given 3D printed device. Factors to consider, for 
example, include surface energy, viscosity, polarity, adhesion, coefficient of thermal expansion, 
and galvanic potential. 
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