
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224596626

Study on real-time test script in Automated Test Equipment

Conference Paper · August 2009

DOI: 10.1109/ICRMS.2009.5270090 · Source: IEEE Xplore

CITATIONS

7
READS

1,091

4 authors, including:

Bin Liu

Beihang University (BUAA)

71 PUBLICATIONS 356 CITATIONS

SEE PROFILE

Yongfeng Yin

Beihang University (BUAA)

18 PUBLICATIONS 87 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yongfeng Yin on 16 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224596626_Study_on_real-time_test_script_in_Automated_Test_Equipment?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224596626_Study_on_real-time_test_script_in_Automated_Test_Equipment?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin-Liu-36?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin-Liu-36?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beihang-University-BUAA?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin-Liu-36?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongfeng-Yin?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongfeng-Yin?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beihang-University-BUAA?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongfeng-Yin?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongfeng-Yin?enrichId=rgreq-593eb4b755f059913bb986049d9453cf-XXX&enrichSource=Y292ZXJQYWdlOzIyNDU5NjYyNjtBUzoyOTY0NzA3Mzg2ODU5NTVAMTQ0NzY5NTU0MDI0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Study on Real-Time Test Script in Automated Test
Equipment

Chongwu Jiang, Bin Liu, Yongfeng Yin, Chang Liu
Department of System Engineering of Engineering Technology

Beihang University
Beijing, China

jcw@dse.buaa.edu.cn

Abstract—In this article we propose a generic test script for real-
time embedded software system testing, which has been applied
to ATE (Automated Test Equipment). After a summary of the
theory about embedded software automated test based on test
script, the design philosophy and implementation details are
described. We have chosen an ATE and integrated python
interpreter into it. Modules for test control are developed on base
of python’s expandability. To ensure real-time, we have trimmed
python interpreter’s source code. This test script has advantages
of simple, flexible, controllable, reusable and portable. The use of
third party python tools results in decreased test script
development time. A number of real-time embedded systems are
tested by this script technology. Both the correctness and the
real-time performance are validated.

Keywords-automatic software testing; test script; real-time
embedded software; simulation testing environment; python

I. INTRODUCTION
Most of embedded systems have features of hard real-time

and resource-constrained, and usually require high reliability.
System test is an important means to improve the quality of
embedded software, and aims at finding the inconsistencies or
contradictions between software specification and application[1].
Testers put SUT (System under Test) which has passed
integration testing in a real or simulated runtime environment,
and then send input to SUT, collect its datas and compare them
with test oracle. ATE (Automated Test Equipment) is widely
utilized in embedded software system testing, and one critical
component of ATE is test script interpreter. Test script is the
scenario directing test process running normally, which
includes datas and instructions with regular grammar, and
plays a key role in automated software testing. It is an effective
method using scripts to describe test cases and executing them
by interpreter in ATE. Test script usually describes the
operations of one or more test cases in text form, to drive SUT
to run according to tester’s intents, and then the consistency of
test result and test oracle can be verified.

Reference [2] and [3] discussed the requirement for test
script in ATE, that is, ATE needs a real-time, flexible script
language for embedded software system testing. Also, since
engineers using the script language have varying levels of
experience and work on multiple projects, it is very necessary
that test scripts be validated early in the test development cycle.

ATE also wants to increase the possibility of easily reusing test
scripts previously developed. A solution to these needs is a test
script language implementation based on Python.

Python is an object-oriented, dynamic semantics, cross-
platform, open-source script language with beautiful syntax.
Theoretically, python program can be compiled and run in any
platform (including a wide variety of embedded operating
systems, such as the Palm OS, VxWorks, etc)[4]. With the API
provided by platform, python can be expanded functionally in
C or C++ language, which not only preserves features of
convenient and flexible, but greatly improves the operating
efficiency.

In this paper, a new universal test script is proposed for
real-time embedded software testing, it is based on python and
taking into account the characteristics of embedded system.
Then we describe the design and implementation of the
technology in detail, at last the correctness and effectiveness of
this test script are validated through a test project of embedded
software.

II. THEORY OF EMBEDDED SOFTWARE AUTOMATED TEST
BASED ON TEST SCRIPT

Reference [5] and [6] provided the definition of ATE: ATE
is a kind of automated device that is used to quickly test a wide
range of electronic devices and systems. More broadly
conceived, ATE can be regarded as a virtual instrument with
more complex functions and customized by the user. ATE has
functions including stimulus, measurement, switch, power,
interface, etc, most of which can be implemented by means of
programming with support of minimum number, inexpensive,
commercial hardware. The hardware resources of ATE are
utilized to the full. Consequently, the overall cost of test is
significantly reduced.

As a typical ATE, ESSTE (Embedded software simulation
testing environment) is often used to take a real-time, non-
invasive system testing for embedded software. ESSTE can
simulate the running environment of SUT, and drive SUT to
run in accordance with the description of the test cases by
means of providing test inputs to SUT through interfaces and
collecting SUT’s output[7].

978-1-4244-4905-7/09/$25.00©2009 IEEE
738

As we know, system testing is concerned with testing an
entire system based on its specifications. When embedded
software is tested through ESSTE, testers first analyze the
relevant documents such as requirement specification and ICD
(Interface Control Document), then construct the models of
SUT’s runtime environment on the basis of ICD, which
simulate the behaviors of equipments communicating with
SUT, therefore, SUT can run in a virtual environment
constructed by ESSTE. So, according to the requirement
specification, testers can compose various types of system test
cases.

As an indispensable component of ESSTE, test script
interpreter makes it possible that test case can be executed
automatically. Fig 1 shows the process of automated system
testing based on test script.

Fig 1: Automated system testing based on ESSTE

III. DESIGN AND IMPLEMENTATION OF TEST SCRIPT FOR
REAL-TIME EMBEDDED SOFTWARE

A. Extending python for software system testing
In general, it is necessary for test script to contain datas and

instructions such as control information (stimulus to SUT),
time (when to input and the laws of the data inputting), data
collection (get output of SUT), and information about
arbitrating (how to determine whether a test is passed), etc.
Embedding Python in ESSTE and expanding it for more
functions can make python as a fully functional test scrip
language.

In order to make python meet the requirement of real-time
embedded software system testing with support of ESSTE, we
have accomplished the following specific work:

1) Embed python interpreter into ESSTE program, so that
test scripts may be executed by means of invoking the API
functions provided by interpreter.

In order to ensure real-time performance of interpreter, we
have python source code trimmed. As result, only core
interpreter and a few necessary modules are kept.

2) Developing extension modules through C/C++ to add
testing functions (In windows, extension modules usually exist
in form of .PYD files). Testers may use “import” statement to
add testing modules to python interpreter, and then a variety of

testing functions provided by modules are available in test
scripts.

3) Giving ESSTE ability to call procedures defined in
python scripts. Testing tasks can be described by way of
python functions, thus ESSTE can schedule these tasks through
the callback mechanism.

B. Details of extending for real-time embedded software
testing
In this section, some python extension has been made in

detail. Concretely, we have added some modules on the basis
of python’s morphology and functions to control testing
process, including the implementation for inputting test data,
accessing SUT’s output and precise time controlling.

(1) Input test data

In ESSTE, only equipment models can communicate with
SUT, through equipment models test scripts transfer kinds of
stimulation to SUT. By way of extension, we encapsulate the
interfaces of model controller in ESSTE. So test scripts can
change equipment models’ variables on interface through
method “set_variable” provided by extension “ts”, the
simulation model will transfer data automatically to SUT in
accordance with the communication protocol. For instance:

import ts # Import test script module
ts.set_variable('DCMP', 'ins_main_mode', 1) # send data to

“INS” via “DCMP”, the main mode of “INS” will be set to 1

(2) Access SUT’s output

Similarly, it is through equipment models that test scripts
can access SUT’s output data. Simulation models receive and
store data from SUT in accordance with the communication
protocol, test scripts can get models’ variables through method
"get_variable". For example:

import ts # Import test script module
H = ts.get_variable('FCS', 'ins_H') # get height of “INS” via

“FCS”, and save it to variable “H”

(3) Time control

Generally, there are two kind of time control for test tasks:
cycle-type and timing-type. Cycle-time means that test task
will be scheduled periodically between its start time and end
time in accordance with the frequency predefined, while
timing-type means that test task will run only once when it’s
time is reached.

In this paper, test tasks of cycle-type and timing-type are
implemented on the basis of delegation pattern, as shown in
Fig 2:

739

Fig 2: Test tasks’ implementation

Testers can describe test task by means of python function,
and then register task’s attributes including type, time, and
period, etc to ESSTE, through method “task_register” provided
by module “ts”. When testing is started, ESSTE will
automatically release signals to kinds of threads which imply
test tasks and consist of python functions according to their
time characteristic. This is an example:

import ts # Import test script module
def task_perd():
 # The content of test task is ignored here

The following code example registers the test task

“taskFly” to ESSTE. The task will be scheduled per 50
millisecond between 60 seconds and 180 seconds.

ts.task_register('taskFly',
 50, # cycle-type task, period: 50ms
 60000, #start time, 60s
 180000 #end time, 180s
)

For simple time delay operation, it is tedious to use the
mechanism of delegation and schedule provided by ESSTE.
Extension "ts" provides a method named "delay" for time
delaying in millisecond level. The interpreter thread will be
suspended when delaying, CPU resource won’t be wasted.

4) Test assertion

It is necessary to analyze the test result to judge whether the
test case being executed should be passed. We can use the
method "assert" provided by extension "ts" to affirm expected
test results. Whichever assert statement fails, the test case will
be deemed to failed, and the conclusion will be wrote to the
database of test result, also, the test case being executed will be
terminated. This is an example:

import ts # Import test script module
ts.set_variable('RC', 'pitch', 5) # Set the pitching angle of

aircraft to 5 degree by sending command to 'FCMS'
through model 'RC'(Remote Control)

ts.delay(5000) # Delay 5 seconds

pitch = ts.get_variable('AIRCRAFT', 'pitch') # Get the

pitching angle of aircraft
ts.assert(4.9<pitch<5.1) # 5 seconds later, if the pitching

angle is not in the correct range, judge this test case failed

(5) Test scripts’ reusing

We add method “run_script” to module “ts” in order to
implement test scripts’ reusing.

import ts # Import test script module
ts.run_script('script1') # Test script “script1” will run here

C. Interface for test scripts in ESSTE
In ESSTE, test scripts are executed by interpreter. First,

interpreter comprehends the meaning of the test script, and then
directs equipment models by model controller according to test
inputs. In this way, the goal of communicating with SUT is
achieved.

The interpreter is a crucial component of ESSTE. Fig 3
shows the relationship of interpreter and other components:

Fig 3: Structure of ESSTE

Model controller is designed to control and manage all of
the simulation models, and plays a role of communication
bridge between test scripts and equipment models. Through the
interfaces provided by model controller, test scripts can set
models’ status and access models’ information.

In order to make test script interpreter has ability to control
equipment models, model controller is required to provide the
interfaces as shown in Table 1.

Table 1: Interfaces provided by model controller

Interface parameter return value function

get_time none
Time since
testing
started (ms)

Get current time since
testing started in
ESSTE.

get_model Name of
model

Model’s
handle

Get the handle of a
model according to
its name.

get_variable

Name of
Model
Name of
Variable

Variable’s
handle

Get the value of a
variable according to
its name and model’s
name.

set_model
Model’s
handle
New status

none
Set the equipment
model to a new
status.

set_variables
Variable’s
handle
New value

none Set the variable to a
new value.

D. Test script interpreter
Test script interpreter’s function is to invoke various kinds

of functions, analyze and dispatch real-time test data in

740

accordance with the test statements, so that the testing actions
are carried out truly. Generally in ESSTE, the interpreter runs
on a specific RTOS (real-time operating system).

We have expanded the core python interpreter to add
operation primitives to make simulation models controllable.
And also, some APIs (Application Programming Interface) of
RTOS are encapsulated to make test scripts have ability to
control the tasks (threads) of RTOS, including operations for
semaphore, message queue and task priority. Thus the
controllability and flexibility of test script are improved.

IV. EXAMPLE FOR EVALUATING
In this section, we present an example to illustrate the

validation of python test script technology described above
within the GESTE toolset (A kind of ESSTE developed by
Reliability Engineering Institute of BeiHang University).

The following are the main content of our work:

1) Integrating python core interpreter to the simulation test
platform. GESTE’s RTOS is VxWorks. Reference[8] discussed
how to integrate python interpreter into VxWorks.

2) Developing extension module of python for testing.
Extension mainly encapsulates the interfaces of model
controller and APIs for real-time task, semaphore and message
queue of VxWorks.

We have selected an FCMS (Flight Control and
Management System) of UAV (Unmanned Aerial Vehicle) as
SUT to validate the python test script technology.

FCMS is a typical real-time embedded system. It plays a
role of control center in UAV with many important functions
such as stability augmentation, automatic pilot, and intelligent
flight management, etc. As a subsystem of avionics, FCMS
communicates with other subsystems including INS(Inertial
Navigation System), GPS, ADC(Air Data Computer),
RA(Radio Altimeter), RC(Remote Control), Telemetry,
Rudder, Engine, etc. The information interchange between
FCMS and other subsystems is shown in Fig 4. FCMS gathers
data from all kinds of sensors and receives instructions from
remote control, then send the corresponding commands to
rudders and engine, and reports current status of UAV through
telemetry. There is a higher real-time request for FCMS whose
operation cycle is usually less than 25ms.

Fig 4: Communication between FCMS and other subsystems

Here is an example for system test case of FCMS:

1) Execute a test case named “takeoff_airline”, to make UAV
fly along the airline preinstalled;

2) Confirm the aircraft’s status, if it’s not flying airline,
record this test case failed;

3) From the testing began between 120s to 720s, make
communication failure(Set the fault flag of remote control
to 1);

4) During communication failure, check the status of the
aircraft per second, UAV should make a left circled
flight(The roll angle should be held at -5 degree);

5) 10 minutes later from communication failure, confirm
whether the plane returns to base (Flag
“return_to_base_flag” should be set to 1, which can be
watched from telemetry);

6) At 730s, recover the communication (Set the fault flag of
remote control to 0);

7) Send a command of “hold height at 2000 meters” to
FCMS through remote control;

8) At 800s, confirm if the height of UAV is held at 2000m
(The error is less than 20m). If the height is not in the
correct range, record this test case failed.

We can describe this test case in python script language, as
follows:

import ts # Import test script module
ts.run_script('takeoff_airline') # Test script “takeoff_airline”

will be invoked
mode = ts.get_variable('TELEMETRY', 'mode') # Get the

working mode of FCMS from 'TELEMETRY'
ts.assert(mode == 0) # Confirm the aircraft is flying along an

airline

def task_rc_fail():
 ts.set_variable('RC', 'fault_flag', 1) #Make communication

failure(Set the fault flag of remote control to 1)
 if ts.get_time()>125000
 roll = ts.get_variable('INS', 'roll') #Get the roll angle of the

aircraft from model “INS”
 ts.assert(-5.2 < roll < -4.8) # Affirm UAV is left circling

(The roll angle should be held at -5 degree, and error is less
than 0.2 degree)

 if ts.get_time() >= 720000
 ts.delay(1000)
 flag = ts.get_variable('TELEMETRY', 'return_to_base_flag')

Get the flag “return_to_base_flag” from model
“TELEMETRY”

 ts.assert(flag == 1)

The following statements register the task named

“task_rc_fail”
ts.task_register('task_rc_fail',
 1000, #period, 1s
 120000, # Start time, 120s
 720000 # End time, 720s
)

def task_rc_recovery():

741

 ts.set_variable('RC', 'fault_flag', 0) # recover the
communication

 ts.delay('1000')
 ts.begin_block_assign('RC', 'command')
 ts.set_current_block('instruction', 0x6B) # Instruction of

holding height
 ts.set_current_block('h', 2000) #hold the height at 2000m
 ts.end_block_assign()
 ts.delay(70000)
 h = ts.get_variable('ADC', 'h') #Get the height from model

“ADC”
 ts.assert(1980 < h < 2020)

The following statements register the task named

“task_rc_recovery”
ts.task_register('task_rc_recovery',
 0, # “0” means that it’s a timing task
 730000, # Start time, 730s
 -1 # end time, “-1” means never end
)

In this test script, 'RC', 'ADC', 'fault_flag', etc. are symbols
of models and variables created in the process of constructing
test environment through GESTE.

In order to make testing more efficiently, we can get the
handle of the model or variable by methods “get_model” and
“get_variable” provided by module “ts”, in this way, models
and variables can be accessed through their handles instead of
names in further statements.

V. CONCLUSION
There are many benefits obtained by using python as a test

script language. Scripts are simple, flexible and real-time. We
have tested the time performance of test script interpreter in
GESTE by using CodeTest (A performance testing tool for
embedded software). Execution time of medium-scale test
script (Example as above) does not exceed 10 ms, and timing
error is less than 1ms. More detailed test data are shown in
Table 2 (Computer configuration: CPU P4 2.8G, RAM 1G, OS
VxWorks).

Table 2: Time performance of python

Test item execution
time

100 sequential order statements
(No conditional statement, no loop statement,
no function call)

3.368 ms

1000 sequential order statements
(No conditional statement, no loop statement,
 no function call)

19.841 ms

2000 loops
(Each loop implement a simple statement) 2.342 ms

150 conditional statements 7.341 ms
100 function calls
(The function is simple with one formal
parameter and one return value)

2.637 ms

From Table 2 we conclude that python as a test script can
meet the test requirement of those embedded softwares whose
real-time request are of millisecond level. Furthermore, there
are many methods and tools such as Psyco, Pyrex, etc. can
accelerate the speed of python interpreter. We are going to test
and utilize these tools in our future work to further improve the
efficiency of the test script.

And also, use of third party python development tools helps
speed the development and validation of test scripts. These
tools can be found easily in open source software community.
Since Python is standardized and cross platform, the potential
for test script portability and reusability is better than using a
non-standard scripting language. In short, the test script
described in this paper can meet the requirements of real-time
embedded software system testing.

REFERENCES
[1] J. Hartmann, M. Vieira, H. Foster, and A. Ruder, "A UML-based

approach to system testing," Innovations in Systems and Software
Engineering, vol. 1, p. 12-24, 2005.

[2] D. J. Johnson and P. Roselli, "Using XML as a flexible, portable test
script language," in AUTOTESTCON 2003. IEEE Systems Readiness
Technology Conference. Proceedings, California, 2003, p. 187- 192.

[3] H. J. Zainzinger and S. A. Austria, "Testing Embedded Systems by
Using a C++ Script Interpreter," in Proceedings of the 11 th Asian Test
Symposium(ATS’02), 2002, p. 380 - 385.

[4] G. Lindstrom, "Programming with Python," IT Professional, vol. 7, p.
10-16, 2005.

[5] E. H. Dare, "Automated test equipment synthetic instrumentation," in
Autotestcon, 2005. IEEE, Orlando, 2005, p. 175- 179.

[6] D. B. Droste and B. Allman, "Anatomy of the next generation of ATE,"
in Autotestcon, 2005. IEEE, Orlando, USA, 2005, p. 560- 569.

[7] D. Zhong, B. Liu, and L. Ruan, "Research on software architecture of
embedded software simulation testing environment," Journal of Beijing
University of Aeronautics and Astronautics, vol. 31, p. 1130-1134, 2005.

[8] S. Raskin (1999). "How to port Python to VxWorks," Available from:
http://mail.python.org/pipermail/python-list/1999-May/003929.html.
[Accessed on 7th May, 2008].

742

View publication statsView publication stats

https://www.researchgate.net/publication/224596626

