Organic Flip Chip Packages for Use in Military and Aerospace Applications

David Alcoe, Kim Blackwell and Irving Memis, Endicott NY
Contents

1. Bridge from Commercial Reliability
2. Existing PBGA use in Aerospace & Military
3. Drivers: Plastic versus Ceramic Package Weight
4. Attributes of PTFE and Thin Core FC Packages
5. Flip Chip Package Reliability
6. Flip Chip Package Wireability
7. Flip Chip Package Outgassing
8. Flip Chip Package Performance after Radiation Exposure
9. Conclusions
10. Acknowledgements
Reliability needs of High End Commercial Products

• **Server & Telecom (Servers, Routers, Hubs & High Speed Switches)**
 – High reliability requirements
 • Minimum 10 years life
 – Component on PCB stressing from 0 to 100C and 3,600 cycles to first failure
 – Component only stressing from -55 to +125C and 1000 cycles to first failure
 – High power requirements, 50 to 100 watts are common
 – High signal densities, > 1700 signals in a 52.5mm BGA
 – High electrical performance, 12.5 GB/s
 – Companies in these markets are building equipment for satellite applications
 – Stringent Shock and Vibration requirements

• **High End Commercial Applications have driven development of technologies that can bridge to Military / Aerospace**
Wire Bond Packaging: Aerospace

- Aerospace: 1st plastic BGA for Satellite
 - Chip Up
 - > 700 BGA I/O, 42.5mm body
 - > 300 signals
 - 2 signal, 4 layer Cavity PBGA
 - 75 micron lw/ls
 - 16.6mm die
 - Commercial Overmold
Wirebond Build Up Package: Military

- 35mm WB CU PBGA
 - 2-6-2 X Section (10 layer), 7 Signals, 3 Pwr/Gnd
 - 37.5mm body size
 - 864 micron total thickness
 - 69 micron thick top BU layer thickness
 - 75 micron lw, 53 micron ls
 - BU vias are 100 micron CO₂ laser drilled
 - 250 micron pads in outer most BU layers
 - 300 micron (12mil) pads on Inner BU layers
 - Stacked BU vias
 - Core vias are 200 micron dia. mechanical drilled on 400 micron pads

- Can be either WB or FC, SIP or SC

- Glass reinforced Polyimide – Nelco 7000 2HT
 - Er: 4.26 @ 1 to 2.5GHz (50% resin content)
 - Dielectric Loss: .009 @ 1GHz (50% resin content)
 - Tg: >250C
PTFE Based Flip Chip SiP’s: Military

- System in Package (ASIC / CSP memory and decaps)
 - Server Processor Packages:
 - 18 mm die size
 - 2 signal layers, 280 signals
 - 250 micron die pad pitch
 - CSP memory
 - Top and bottom decaps
 - 630 I/O SMT PGA connector
Weight Comparisons for Plastic vs Ceramic 40mm body size

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Approximate substrate weight (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic (30 layer, alumina, 10mil/layer)</td>
<td>48.0</td>
</tr>
<tr>
<td>Ceramic (15 layer, alumina, 10 mil/layer)</td>
<td>24.0</td>
</tr>
<tr>
<td>PTFE BGA 9 layer substrate</td>
<td>2.3</td>
</tr>
<tr>
<td>Thin core build up 10 layer substrate</td>
<td>2.9</td>
</tr>
<tr>
<td>Thin core build up 6 layer substrate</td>
<td>2.0</td>
</tr>
</tbody>
</table>
High End Telecom and Server Applications using Flip Chip Plastic

- Drivers are similar to Military/Aerospace
 - Package shrink is critical, weight not as large a concern
 - High speed signals with low noise
 - Clean eye’s at 12.5 Gb/s in production
 - 600 differential pairs are common
 - High BGA/LGA/PGA I/O with min. 10 yr field life
 - 52.5 mm, 2577 BGA I/O, 1 mm BGA pitch in high frequency routers
 - 90nm Si technology
 - 25 micron lw/ls
 - 200 micron Flip Chip die pad pitch, 16 rows deep
 - Low volume applications, some need to remain on shore
Highlights of Advanced Plastic Flip Chip Packaging

- 50 micron UV laser drilled vias
 - Fine pitch (less than 200 micron), for full access to wiring planes

- 12 micron thick Copper Conductors
 - 25 micron Line Width

- Thin Core and Coreless Technologies

- Thin Substrates (0.4 to 0.6 mm thick)

- Build up dielectric layer thickness available 35 to 50 microns

- Low-stress PTFE and Particle Filled Epoxy Dielectrics
 - Low-k dielectrics: High Frequency, Low-Noise applications
 - \(Er = 2.7 \) for PTFE, \(Er = 3.7 \) for thin-core buildup

- Solder Bumped Copper Die Pads
Overview: Typical PTFE 9 layer Cross Section - HyperBGA®

Substrate thickness - .47 mm
Overview: Typical Thin Core 10 layer Cross Section - CoreEZ®

- Solder mask - PSR4000 15 μ thick
- Build up layer 1
- Build up layer 2
- Build up layer 3
- DriClad, 35/50 μ thick
- Outer Core dielectric
- DriClad, 35/50 μ thick
- Inner Core
- 100/150 μ thick
- Thermount
- Core Cu
- 12 μ thick
- Copper-filled stacked micro-via
- Substrate Thickness – 0.55 mm
Typical PTFE Package Reliability Performance

<table>
<thead>
<tr>
<th>Test</th>
<th>Format</th>
<th>Duration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconditioning - JEDEC Level 3</td>
<td>Component</td>
<td>96H</td>
<td>N/A</td>
</tr>
<tr>
<td>Thermal Cycle (0/100°C)</td>
<td>Card</td>
<td>3600 Cycles</td>
<td>pass</td>
</tr>
<tr>
<td>Power Cycling (25/125°C)</td>
<td>Card</td>
<td>3600 Cycles</td>
<td>pass</td>
</tr>
<tr>
<td>Deep Thermal Cycling (-55/+125°C)</td>
<td>Component</td>
<td>1000 Cycles</td>
<td>pass</td>
</tr>
<tr>
<td>Wet Thermal Shock (-40 / +125°C)</td>
<td>Component</td>
<td>100 Cycles</td>
<td>pass</td>
</tr>
<tr>
<td>T. H. & B. (85 °C / 85%RH/3.7 V)</td>
<td>Card</td>
<td>1000 Hours</td>
<td>pass</td>
</tr>
<tr>
<td>HAST (110 °C / 85%RH/3.7V)</td>
<td>Card</td>
<td>264 Hours</td>
<td>pass</td>
</tr>
<tr>
<td>Pressure Pot (121 °C / 100% RH/2atm)</td>
<td>Component</td>
<td>96 Hours</td>
<td>pass</td>
</tr>
<tr>
<td>High Temp. Storage (150 °C)</td>
<td>Component</td>
<td>1000 Hours</td>
<td>pass</td>
</tr>
<tr>
<td>Low Temp. Storage (-65°C)</td>
<td>Component</td>
<td>1000 Hours</td>
<td>pass</td>
</tr>
<tr>
<td>Shock/Vibration JEDEC</td>
<td>Component</td>
<td>various</td>
<td>pass</td>
</tr>
</tbody>
</table>

Component level testing is die assembled to substrate with underfill, lid and BGA balls, card level testing is component assembled to PCB.
0 to 100°C Accelerated Thermal Cycle Reliability

Component Attached to PCB

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Ceramic BGA ATC Life (cycles)</th>
<th>PTFE BGA ATC Life (cycles)</th>
<th>Thin Core Build Up ATC Life (cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Internal</td>
<td>>10,000</td>
<td>>10,000</td>
<td>>5000</td>
</tr>
<tr>
<td>Flip Chip Joint</td>
<td>>10,000</td>
<td>>10,000</td>
<td>>5000</td>
</tr>
<tr>
<td>BGA Corner Joint</td>
<td>800 to 2,000</td>
<td>> 10,000</td>
<td>>5000</td>
</tr>
<tr>
<td>BGA Chip Edge Joint</td>
<td>>10,000</td>
<td>>10,000</td>
<td>5000; extendable to 10,000 with optimized design</td>
</tr>
</tbody>
</table>

- Includes Precondition Stress as JEDEC-020C Moisture Resistance level 4 with 3x Reflows
- Package size 42-52mm; Both PTFE and Thin Core exceed ceramic package reliability
Flip Chip Package Wireability Comparison

<table>
<thead>
<tr>
<th>Substrate</th>
<th># of Signal layers</th>
<th>Signal Wiring Escapes per mm of die edge per layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic, 30 layers</td>
<td>12</td>
<td>2.7</td>
</tr>
<tr>
<td>PTFE BGA, 9 layers</td>
<td>2</td>
<td>4.4</td>
</tr>
<tr>
<td>Thin Core Build Up 6 layers</td>
<td>2</td>
<td>5.9</td>
</tr>
<tr>
<td>Thin Core Build Up 10 layers</td>
<td>4</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Organic Flip Chip Package Outgassing Performance

- **Materials**
 - Rogers 2800 PTFE
 - Asahi APPE
 - Driclad Epoxy
 - Thermount 55LM
 - PSR4000

- **Maximum of 1.0% Total Mass Loss**
 - All materials & finished substrates < 1.0%

- **Maximum 0.1% Collected Volatile Condensable Materials**
 - All materials & finished substrates < 0.1%
Evaluation of Materials Subjected to Various Radiation Levels

- Evaluated PTFE BGA (HyperBGA®) and Thin Core (CoreEZ®) materials radiation response
 - Radiation Exposure: Co60 Gamma:
 - Control
 - 32, 50, 100, 300, 500, 700, 1000 and 5000 krad TID
 - PTFE Materials evaluated: Rogers 2800, Asahi APPE
 - Results: Many applications will be unaffected by radiation
 - APPE has no measurable degradation to 5 Mrad
 - R2800 shows gradual loss of ductility with exposure
 - Thin Core Build Up Materials Considered: Thermount 55LM, Particle Filled Driclad Epoxy, PSR4000
 - Results: No measurable change of mechanical properties through 5 Mrad
Material Ductility Test with tensile stretch of film sample – PTFE example

Sample geometries:

½” wide, 6” length
Thickness as used in application, <0.010”

Monotonic Stretch to Failure
Crosshead rate: 0.025”/min
5-10 samples per condition, average failure strain found

Criteria for failure – onset of load loss

Moving Crosshead
Material Sample
Fixed Crosshead

Endicott Interconnect
EI’s packaging performance after radiation exposure

Material Degradation

Radiation Dosage (Co60 Gamma - Krads)

- Thin Core Soldermask PSR4000
- Thin Core Buildup Driclad
- Thin Core Thermount
- PTFE Package APPE
- PTFE

✓ Ductility performance indicates package performance in thermal cycling

- Thin Core Build Up appears to be a good choice for Rad Hard and Strategic apps.
 - materials show no ductility degradation with radiation level
- PTFE appears to be best suited for Rad Tolerant applications
 - PTFE ductility is higher than all other materials below 300K rad exposure
 - PTFE predictably degrades significantly above 300Krad exposure levels
Conclusions

• Flip Chip PBGA Packages are Suitable for Military / Aerospace Applications
 – Reliability
 – Wireability
 – Outgassing
 – Radiation Exposure

• Significant Weight Savings Realized with PBGA Packages

• Advantage to Overall Life Costs and Performance
Acknowledgements

For controlled material radiation exposure, outgassing, sample design and analysis, and helpful review / comments

• Honeywell: Ron Jensen & Dave Scheid

• BAE: Tom Cronauer, Keith Sturcken, Paul Nixon, Colin Dublin

• NG-ST: Mary Massey

• EIT: Louis Matienzo & Todd Davies