
Intel Technology Journal Q1, 1999

Preface

Lin Chao
Editor
Intel Technology Journal

Welcome to 1999, and the 1st Quarter issue of the Intel Technology Journal. The focus of this issue is Intel's current
CAD tools, the tools used to design Intel's microprocessors. In the early 1960s, the process of designing the first
integrated circuit was entirely manual. As one might guess, this was very expensive, laborious, and error-prone.
However, in the 1970's, software CAD tools came to the rescue and became an integral part of the design of complex
microprocessors produced by Intel.

These complex CAD tools are the focus of this issue. The first paper describes the architectural direction of Nike,
Intel's next generation CAD tool suite, which supports code sharing to improve development efficiency, tool quality,
and maintainability. As microprocessors approach deep sub-micron dimensions, the impact of physical design must be
considered early in the circuit design phase to prevent costly re-designs. The second paper discusses Intel's FUB
Circuit Design Environment combining circuit design with physical layout planning.

Datapath design (from RTL to layout) can take more than 60% of a project's human resources. In the third paper, a
new design workflow is proposed along with a set of tools that will further automate the design process. The hope is
that this proposed workflow will spur both academia and industry to tackle the problem of more automated datapath
design tools. The fourth paper looks at the challenge Intel faces in making tools run on UNIX* and Windows NT*
operating systems running on Intel and non-Intel architecture platforms. Tools and methods for formal verification at
gate-level description are also discussed in the fifth paper. An example of formal functional verification of gate-level
floating-point designs against IEEE-level specifications is presented. Structural and functional testing tradeoffs are
described in the final paper. Again we feel that there are opportunities for the industry to provide more robust and
scalable solutions for defect-based testing.

Copyright © Intel Corporation 1999. This publication was downloaded from http://www.intel.com/.
Legal notices at http://www.intel.com/sites/corporate/tradmarx.htm

http://www.intel.com/technology/itj/chao_bio.htm

Designing for Success

By Greg Spirakis,
General Manager, Design Technology

Intel Corp.

At Intel, we deliver state-of-the-art
microprocessors for every segment of the
computer market. Our long history of
innovation in Design Technology has enabled
us to design, validate, and test each and every
generation of these leading-edge
microprocessors. This ability is among Intel's
key competencies. It takes more than 100
software tools to design, validate, and test our
microprocessors. These tools are either
developed internally or procured from
external vendors.

A major challenge ahead of us is the
productivity gap identified by Sematech: the
complexity of devices is increasing at more
than double the rate of industry's ability to
build them. This gap between
process/manufacturing capabilities and
design/test capabilities in the semiconductor
industry continues to widen.

To address this gap, we challenged our
Design Technology Division to address
productivity as one of its major issues. Our
target is to do twice as many products, in the
same time-space, with the same size teams
that we currently have. To this end, we
developed the concept of providing a total
solution to our engineering community that
integrates internal and external tools,
methods, and capabilities. For the next-
generation products, this combination of
technology, tools, and methodology is
internally known as the Nike generation
(preceeded by Athena, Zeus, and Cronus).

On the technical front, we are building an
infrastructure that will keep our engineers
productive while using multiple operating
system environments such as Windows NT*
and UNIX* on Intel 32-bit and future 64-bit
hardware platforms. We also recognized the
need to emphasize reuse in software
engineering, architecture, and modeling, and
therefore we developed a platform that
allows developers across continents to share
and integrate their solutions with as little
overhead as possible.

For specific solutions such as reusing
verification tools, designing datapaths, circuit
design tools, and test strategy and tools, we
defined productivity goals that will help us
overcome the productivity gap mentioned
earlier. Each tool has a specific productivity
target that either reduces design time for the
same problem or solves a more complex
problem in the same amount of time.

In today's world of faster, smaller, and
cheaper, our tools must meet the
requirements of our next-generation
microprocessors. In our Design Technology
Division, as we move into the future, we will
continue to develop the technologies that will
provide Intel with a key competitive
advantage over the next decade.

Copyright © Intel Corporation 1999. This
publication was downloaded from
http://www.intel.com/.

Designing for Success 1

http://www.intel.com/

Intel Technology Journal Q1, 1999

Legal notices at
http://www.intel.com/sites/corporate/tradmar
x.htm

Designing for Success 2

http://www.intel.com/sites/corporate/tradmarx.htm
http://www.intel.com/sites/corporate/tradmarx.htm

Nike�s Software Architecture and Infrastructure:
Enabling Integrated Solutions for Gigahertz Designs

V. Nagbhushan, Nike Development, DT, Intel Corp.
Yehuda Shiran, Nike Development, DT, Intel Corp.

Satish Venkatesan, Nike Development, DT, Intel Corp.
Tamar Yehoshua, Nike Development, DT, Intel Corp.

Index words: architecture, data model, software infrastructure

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 1

Abstract
This paper describes how Nike�s innovative architec-
ture addresses the expanding requirements of Intel�s
next-generation processor designs while enabling a de-
sign environment that is more productive than one built
with the previous tool generation.

This paper shows how software architecture and data
modeling techniques are used as core attributes of a
CAD tool suite. We discuss the issues that have influ-
enced Nike�s architectural direction, such as technol-
ogy trends, processor architecture trends, and comput-
ing platform trends. We identify some of the major
drawbacks of existing tool suites and show how Nike
architecture addresses these. Lastly, we describe how
we developed a software infrastructure in order to sup-
port and facilitate the code sharing necessary to imple-
ment the designed architecture. The standard software
development environment is described, including the
tools and methodologies that are uniformly deployed to
all Nike developers.

Introduction
Design and Test Technology (DT) is the supplier of
CAD/CAE solutions for Intel�s lead processor design
projects. The Nike department within DT is chartered
to provide the future generation CAD tool suite for use
well into the next millennium. The first release of the
Nike tool suite is scheduled for Q3, 1999.

Nike architecture was influenced by several external
and internal vectors. The primary external vectors were
industry technology trends, processor design trends, and
Intel�s design roadmap and computing platform trends.
The primary internal vectors were the need to improve
development efficiency, tool quality and maintainability,
and to ensure adequate extendibility.

External Vectors
Industry technology trends predict a continuation of fea-
ture size reduction resulting in an exponential increase
in chip transistor counts and a significant increase in
frequency. Chips in the next decade could have up-
wards of 100 million transistors and run at frequencies
well beyond 10GHz. As feature sizes decrease, ag-
gressive circuit styles are also becoming the norm. This
implies that second order effects, such as noise and
inductance, become key factors in design decisions. In
order to make these decisions effectively and efficiently,
designers need increased visibility into data from mul-
tiple domains, such as circuit and layout.

Analysis of microprocessor architecture trends [1] and
the Intel design roadmap show the emergence of highly
integrated chips and ever decreasing time to market.
This combination necessitates a design environment that
will enable significant improvements in designer pro-
ductivity.

A major change in the computing environment has been
the emergence of Windows NT ∗ on Intel architec-
ture (IA) as a sophisticated, inexpensive, and powerful
platform. In comparison to the existing UNIX* envi-
ronment commonly used for CAD, the Windows* envi-
ronment provides a more consistent user interface (UI)
as well as a rich set of office applications. The chal-
lenge for the developers of new CAD tool suites is to
integrate the office environment with the CAD tools
and use the Windows environment to provide a more
productive system for the user.

∗ All other trademarks are the property of their respective
owners.

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 2

Internal Vectors
As the coverage of the tool suite and the overall soft-
ware size increases, improving software efficiency
becomes very important. Software efficiency can be
broadly categorized along two lines:

• Extensibility and maintainability of CAD tools.
Even though individual tools might change, the core
architecture of a tool suite persists for a very long
time. For example, the previous CAD architec-
ture at Intel spanned a decade. Given the dy-
namic nature of VLSI technology, it is impossible
to predict accurately for the next decade. Hence,
Nike architecture should be easily extendible and
efficiently maintainable. For example, we need to
build in enough headroom so that new manufac-
turing process features can be incorporated with-
out massive system-wide code changes. Simi-
larly, tools must be customizable to allow major
changes in design methodology.

• Tool quality and development efficiency. In
order to reduce the number of iterations in the
design and implementation of complex software,
there needs to be a well defined software devel-
opment methodology where developers have de-
tailed specifications and implementation plans up-
front. In addition, quality needs to be built into the
tools in order to avoid numerous cycles to fix de-
fects.

In the next section we describe the Nike software ar-
chitecture, goals, and principles. We then present a
data-modeling methodology and architecture that are
key enablers for achieving Nike architectural objec-
tives. In the subsequent section, we describe a soft-
ware infrastructure that supports and facilitates effi-
cient development of Nike CAD tools.

Nike Software Architecture
This section describes a novel software architecture
pioneered by Nike. We examine the drawbacks of
existing CAD architectures. We then present LaMA,
a layered modular architecture, followed by a set of
architectural principles that drive the design and de-
velopment of Nike.

Drawbacks of Existing Architectures
After studying existing CAD architectures, we found
that they have several deficiencies. The following is a
brief overview of the salient root causes of these defi-
ciencies and the symptoms that they exhibit:

• Non-modular. Software was not written in a
modular fashion. This often led to local imple-
mentations of similar or even identical functional-
ity, resulting in inconsistent behavior. Users had
to reconcile inconsistencies such as different tim-

ing or RC modules in various tools. It also made
reuse difficult and severely impacted development
efficiency. One of the causes of non-modularity
was the existence of several data models; for ex-
ample, multiple data representations for layout.

• Difficult data exchange across domains. Mul-
tiple data models in various domains were incon-
sistent in terminology, interfaces, and implementa-
tion. This made it difficult to provide a unified
mechanism to map entities across the domains.
Such mapping, when necessary, was done in an
ad-hoc fashion that often resulted in loss of data,
and consequently, productivity.

• Ad hoc persistence mechanisms. Typically,
ASCII files were used to store data persistently.
However, there was inadequate use of industry
standard formats, often leading to a proliferation
of files, multiple readers/writers, and semantic mis-
matches between formats representing the same
data. ASCII files are also not performance ori-
ented, have fundamental capacity limitations, are
intolerant of new software releases, and make it
very difficult to implement incremental input/out-
put.

• Inconsistent look and feel. Users need to famil-
iarize themselves with different interfaces to per-
form similar actions. This results in a high learning
curve as well as loss of productivity.

Layered Modular Architecture (LaMA)
Nike is pioneering Layered Modular Architecture
(LaMA), a hierarchical decomposition of a complex
tool suite consisting of over a hundred tools with a
total code size exceeding a million lines of code. Fig-
ure 1 shows the basic LaMA pyramid.

Figure 1: Layered modular architecture

In this model, the overall tool suite consists of several
sub-systems; each sub-system is targeted at a par-
ticular user flow. A sub-system is comprised of sev-

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 3

eral capabilities each of which represents a user-vis-
ible functionality. A capability is implemented by one
or more software modules, which are in turn made up
of several atoms. The modules and atoms are de-
signed with well-defined interfaces to facilitate reuse
by several capabilities.

Figure 2: Example of LaMA sub-system

Figure 2 shows an example sub-system and its de-
composition. Users may interact with these sub-sys-
tems through a visual cockpit, which enables simulta-
neous interaction with multiple domains such as circuit
and layout. This reduces the number of design itera-
tions caused by downstream surprises. The modular
architecture enables a software developer to reuse the
modules and atoms, and the cockpit integrator to re-
use the capabilities to the maximum extent.

Software Architecture Principles
The ultimate objective of Nike software architecture
is to enable efficient development of the CAD soft-
ware that can meet or beat the high-level specifica-
tions set forth for the system. In order to drive this
objective, we formulated a set of architectural prin-
ciples. They were kept general enough so as to apply
to all areas of the Nike tool suite; functional and area-
dependent factors (e.g., principles that may apply only
to timing tools) are not covered here. These main
architectural principles are briefly explained below:

• Provide integrated tool suites (or cockpits) that
enable users to execute a flow or perform similar
operations. The primary goal is to improve user
productivity.

• Software components should have a modular
design and should be implemented using com-
mon, unified services. Each component should
have a well documented interface, and similar func-
tional components across the entire Nike tool suite
should be implemented as common services. For

example, there should only be one RC estimator
for a given input abstraction, accuracy, and run-
time. This can significantly improve reuse, quality,
development efficiency and end-user consistency.

• The Nike system should present a common look
and feel. The look (visual appearance) of UI
objects that perform similar operations should be
similar. The feel (behavior) of similar operations
and data objects should be similar. The goal is to
improve the predictability of the system, and con-
sequently, the productivity of the user.

• Tools should support incremental processing,
that is, they should be able to handle small delta
changes to the input by incremental processing,
and produce results that exhibit small delta changes.

• The Nike system should be extensible. Both, in-
dividual capabilities, as well as the entire tool suite
should allow a user to easily extend its functional-
ity.

• The Nike system should support plug and play
with external tools.

A subsequent section describes a data modeling meth-
odology and architecture that embodies these prin-
ciples and enables us to achieve the architectural ob-
jectives. While a detailed description of the entire Nike
architecture is beyond the scope of this paper, the
following section describes the Nike layout architec-
ture and how it meets the goals stated above.

Nike Layout Software Architecture

Figure 3: Nike layout architecture

Figure 3 shows a layered view of the Nike layout soft-
ware architecture where most of the software mod-
ules have been partitioned into four layers: data model,
engines, capabilities, and UI. A software module can,
in general, access any module in a layer below it, ei-
ther directly or indirectly (e.g., the full chip module

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 4

can make calls to any of the engines or data modules).
Each module has a well defined procedural interface
(API), which can be accessed by other modules.

The data model (DM) layer is the foundation of the
architecture and consists of the software that models
CAD data in memory and its interfaces. All the mod-
ules access CAD data by making calls to the DM APIs.
The engines layer comprises mostly algorithmic mod-
ules (such as design rule checkers) that perform analysis
and synthesis operations on the data. Modules in the
capabilities layer address requirements of a subset of
the domain (e.g., full-chip module). The user inter-
face (UI) layer, drawn vertically, represents the user
interface presented by all the other modules. The I/O
module below the DM layer is a specialized engine to
provide file input/output and persistence services. It
accesses a slightly lower-level DM interface (com-
pared to other engines) to enable fast I/O. The fol-
lowing paragraphs provide details about each layer:

• The data model layer serves as the in-memory
repository for all the primary, non-derivable data
in the system. In the case of layout, it is called the
unified data model (UDM) and contains data (such
as cells, wires, nets, transistors, etc.) and func-
tions to access and modify the data. The data is
modeled as a hierarchical class system, which is
described in the next section. The API to this layer
guarantees consistency of the data structures and
semantics.

• The engines layer is comprised of software mod-
ules with well defined functionality. Algorithmic
engines (such as RC estimation and extraction,
placement, global and detailed routing (GR, DR),
compaction, netlisters) and core editing engines
(wire editing, move, etc.) fall into this layer. All
the engines work off data from the DM layer, but
may create temporary, derived data for efficiency.
For example, the DRC engine works off scan-line
data that is derived from the DM data. The de-
rived application data may be saved along with
the primary UDM data by the persistence mecha-
nism to enable incremental processing.

• The capabilities layer is mainly comprised of envi-
ronments that address the traditional sub-domains
such as full-chip layout, block layout (for random
logic and datapath) and leaf cell. Each of these
provides functionality and customization appro-
priate to that capability. Each capability can ei-
ther directly expose an engine functionality to the
user (through the UI layer) or hide or modify it.

• The user interface (UI) layer provides user visibil-
ity into functionality and data. It is comprised
mainly of a graphical user interface (GUI) and ex-
tension system. The capabilities and some en-

gines instantiate GUI items at run-time to interact
with the user. Engines such as DRC provide their
own GUI to customize rules and display and scan
errors. This enables them to be completely self-
contained and reusable. The extension system en-
ables customization by allowing easy access to data
and functionality. The data model, engine and ca-
pability modules, provide access through a Tcl in-
terpreter and through Windows* automation in-
terfaces. GUI customization is enabled by
VisualBasic* for Applications (VBA) on Windows
NT*.

All the capabilities shown in Figure 3 are provided to
the user in an integrated framework called the Nike
Integrated Layout Environment (NILE).

The layered architecture ensures that there are no loops
in the module dependency graph. Each module has a
well defined API to maximize reusability; for example,
the engines are reused by several capabilities. This
re-usability has enabled us to develop new capabili-
ties very quickly.

We have invested significant effort to ensure that each
function is implemented by only one software module.
For example, there is only one RC estimation module.
If implementation of multiple modules began simulta-
neously, they were merged after the requirements ma-
tured.

The common GUI layer guaranteed a common look
(e.g., native NT-looking widgets, docking windows,
common list, and tree viewers, etc.). The I/O module
is the single entry and exit channel for all design data.
This has enabled us to minimize semantic mismatches.

Data Modeling
From a data modeling perspective, the processor de-
sign cycle can be divided into three phases: logic, cir-
cuit, and layout. Each phase successively refines the
level of abstraction by adding details.

The design cycle involves many iterations, both within
a phase as well as between phases. At each phase, a
new representation is created, analyzed, and iteratively
improved to meet system requirements. One objec-
tive of CAD tools is to minimize the time for each it-
eration and to minimize the total number of iterations
to reduce time-to-market.

Figure 4 illustrates classic and modern design para-
digms. In the classic paradigm, design phases are se-
quential in nature with the underlying assumption that
optimal implementation of each phase results in an
optimal realization of the next. In the modern design
paradigm to be supported by Nike, all design phases
proceed in parallel. Within each design phase, infor-

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 5

mation is required from the other two. This necessi-
tates ease of interaction between design tools at dif-
ferent design phases.

Figure 4: Design paradigms

Motivation

In terms of direct end-user benefit, data models are
primarily driven by the productivity vector. This im-
plies that data models should facilitate smoother auto-
mation/integration between different design tools with
simpler work flows for certain tasks, and they should
provide users with better capabilities to make tradeoffs/
optimizations across design domains as well as be-
tween tools within the same domain.

These high-level requirements can be mapped into the
following Nike system architecture goals:

• Enable a flexible configuration that facilitates a plug-
and-play system architecture; different combina-
tions of software components should be usable
cooperatively. This is significant because system
requirements will continue to evolve over the next
several years.

• Achieve semantic consistency in data representa-
tion across layout, circuit, and logic domains. This
will facilitates correct data transformations and
exchange between tools in different domains.

• Promote reuse of common software components.

• Insulate individual CAD capabilities from persis-
tent storage issues. This enables ease in changes
to a storage mechanism as well as allowing mul-
tiple forms to exist transparently.

There is a trend in the EDA industry towards deliver-

ing a suite of inter-operable components rather than
point tools. The next section presents a data model
architecture that is helping us cope with this trend.

Data Model Architecture

As described above, the entire processor design cycle
may be viewed as transformations between represen-
tations. At each representation, multiple CAD tools
act as producers and consumers. A layout editor is an
example of a design producer; simulators and design
verification tools are examples of consumers. Data
flow between producers and consumers typically tran-
scends domain boundaries. For example, a layout
routing tool may require information from a circuit tim-
ing engine; the timing engine in turn requires informa-
tion from a layout parasitics calculator. Data model-
ing for the CAD domain is complicated by the diver-
sity of design producers, consumers, and their
singularities. This diversity also implies that different
design tools need to view different aspects of a de-
sign. These considerations necessitate a modeling
framework that can accommodate an assortment of
data types and also be extensible to facilitate inclusion
of new types. Our solution is to provide a framework
that allows multiple levels of data models, related by
specialization/generalization relationships, each tailored
to the specific needs of applications. This facilitates
interoperability and reuse of existing models. Seman-
tic mappings between models promote ease of infor-
mation
exchange. Figure 5 illustrates this modeling frame-
work.

Figure 5: Data model framework

At the root of the framework is a unified core data
model (UCM) that serves as the common vector be-
tween logic, circuit, and layout domains. It defines a

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 6

set of design entities that have consistent semantics
across domains. These entities are primarily concerned
with representing the hierarchy and connectivity1 of a
design, along with an interface to manipulate it. Do-
main models extend UCM with domain specific infor-
mation. For example, the layout data model would
add geometrical information. CAD applications can
operate directly on UCM, a domain model, or an ap-
plication view. An application view is either an exten-
sion of a data model with application-specific entities,
or a suitably adapted perspective of the information in
a data model. In all of the domain models and appli-
cation views, UCM continues to be the common
baseline. Having unified domain models allows the
reuse of engines and minimizes I/O overhead. The
reduction of the number of data models also facilitates
the development of centralized cross-domain mapping
services.

Figure 6 illustrates a usage scenario where UCM serves
as a basis for enabling data-driven interactions be-
tween capabilities in the circuit and layout domains.
Semantic mappings between data in the layout plan-
ner and circuit design environment are accomplished
using a Mapper module. The Mapper has the ability
to map from a design object in one domain to a corre-
sponding design object in another domain; the map-
ping is performed at the granularity of UCM entities.

Figure 6: Sample usage scenario

Since the amount of time spent by each CAD tool on
its task can be significant, it is also essential for inter-
actions between tools to be incremental in nature. A
designer must be able to operate on data in one do-
main and interactively see the effect of the change in

another domain. As a concrete example, a designer
can modify block placement in the layout planner and
get interactive feedback on the effect of the new route
on circuit timing. Although, data models alone cannot
provide incremental interactions, they facilitate the de-
velopment of modules and methodologies that can.

In summary, two key architectural goals have been
addressed:

1. Facilitate interactive interactions across CAD tool
boundaries.

2. Enable incremental iterations through the design
cycle.

In the next section, we describe the software building
blocks necessary to realize our vision of a modular
architecture. We itemize the software tools and meth-
odologies we implemented in Nike.

Software Infrastructure

Nike�s architecture requires a strong focus on
software quality. A common data model and a high
level of module reuse introduce dependencies
between projects that can magnify any software
defects. Development at three sites adds additional
complexity. To support high-quality development,
Nike has defined and implemented a standard
software development environment, including tools
and methodologies, that are uniformly deployed to
all Nike developers.
Standard Development Environment
The initial step was to itemize the software develop-
ment tools being used across the department and set
the Software Development Environment (SDE) Plan
of Record (POR). The SDE POR lists all of the de-
velopment tools and their versions that should be in-
stalled for each developer. This step is critical to en-
sure that all code libraries will be compatible and that
common methodologies can be implemented.

Configuration Management
Our first priority was to choose a source code man-
agement tool for all sites and to define a common meth-
odology for usage of the tool. A working group con-
sisting of members from each site assessed best-in-
class configuration management tools. After an evalu-
ation and pilot usage, we agreed to purchase Rational�s
Clearcase ∗. Within several months, the tool and a
common usage methodology were deployed to all the
developers in the department.

The methodology defines everything from directory

∗ All other trademarks are the property of their respective
owners.

1 Since a chip is very complex, it is natural to decom-
pose it into smaller components. Each component is
successively decomposed into smaller, more manage-
able components, thus creating a hierarchy of com-
ponents. The connections between these components
are referred to as design connectivity.

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 7

structure for the code and libraries to tagging of ver-
sions and naming conventions for branches. The re-
sult is that all Nike developers are now using the iden-
tical setup so that developers from one group can easily
navigate the source code from another group. In ad-
dition to the above features, when using the configura-
tion management system�s branch-and-merge capa-
bility, developers can create and maintain multiple vari-
ants of their software concurrently. This allows them
to easily move from the latest nightly build to a previ-
ous release and vice-versa.

In order to facilitate a high level of code sharing across
the sites, we implemented an additional component of
the configuration management tool that enables cross-
site sharing of code repositories, namely Rational�s
Multisite*. After a developer has revised code and
checked it in at one site, these changes are synched
up at the remote site at intervals of 15 minutes. The
replication is transparent to the user. This means that
developers can access all modules in real time, whether
they are being developed locally or remotely. A de-
veloper in Haifa cannot tell the difference between a
module developed in Haifa and one developed in Santa
Clara. Developers can share modules on the spot
and debug integration problems over the phone. They
can iterate this process easily and efficiently, as if they
are sitting in the same building. The capability of in-
stant code sharing is key to the tight integration be-
tween our performance verification tools and physical
design tools, and to enabling the module sharing and
reuse detailed earlier.

Figure 7: Software development cycle

Software Development Cycle
Another important component of the software infra-
structure is the software development cycle. As shown
in Figure 7, we defined an iterative software develop-
ment process based on Design, Iterate, and Test (DIT)

cycles. Each project breaks their development into
small tasks whose DIT cycle is supposed to last no
longer than 12 weeks. DIT cycles are designed to
enable frequent synchronization points for validation.
Once a quarter, we have a synchronization point where
all the tools and modules synchronize to the same ver-
sion of all libraries across all sites. This is critical in
order to enable the modular architecture to work. The
component sharing creates a large number of depen-
dencies that we need to manage; the frequent syn-
chronization points minimize the number of versions
that need to be supported for each library.

As the common modules mature and stabilize, we have
detailed a plan to move to weekly synchronization of
the Nike libraries and eventually daily. Initially, there
were too many frequent changes to the interfaces of
the common modules to sync up more than once a
quarter. In order to monitor the stability of the mod-
ules, we are tracking defects in the code through a
bug-tracking system. After each synchronization point,
bugs found in the libraries are reported internally and
tracked in this system.

As part of the design phase, we require all Nike tools
to write a Market Requirements Document, Product
Proposal, External Product Spec, Internal Product
Spec (when relevant) and a Test Plan. Each docu-
ment in the design phase is approved by key custom-
ers, the system architects, and the software architects.
Templates for all the documents are available for de-
velopers to help guide them through the process. In
addition, we view prototype development as an im-
portant tool for gathering requirements and customer
feedback and assessing new technologies. Prototyping
may take place at any stage in the development cycle.

In order to achieve high quality in the code and de-
sign, we have implemented design reviews and code
inspections across the organization. All critical code
must be inspected, and authors are required to ad-
dress major defects before an inspection is closed.

Validation
In the area of software testing, Nike is going for a
breakthrough in both quality and productivity. After
evaluating several test management systems from ex-
ternal vendors, we decided they did not meet our spe-
cific needs. Instead we chose to develop and deploy
Olympus, an internally developed test management
tool. Currently the first phase of development on
Olympus is complete, and we are piloting the tool in
each site. For improved productivity, Olympus pre-

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 8

sents the developer with a sophisticated front end
through which he or she can complete test writing,
regression building, golden results updating, and out-
put analysis. Olympus integrates a user-friendly front
end through which the developer creates and runs tests
and regression on top of a back end that stores test
data in an SQL database. Since all test data is cen-
trally located in a database, multiple groups, across
both sites, can share test data. Additionally, the de-
tails of the test are stored in the database and can be
used for test planning even before the tests are com-
pleted. The database also adds an important dimen-
sion to our software development environment. Nike�s
testing is observable. Program management can query
the database and find out how many tests have been
created in the past month, how many have passed suc-
cessfully, and how many are still not ready for regres-
sion.

Conclusion
In Nike, a major thrust of our development has been
centered on defining a robust and modular architec-
ture. The architecture is still evolving as development
progresses. Our challenge is to sustain the architec-
tural principles over the lifetime of the tool suite.

To date, we have invested significant effort in the defi-
nition phases of the data model and the infrastructure.
We have observed that there is an overhead associ-
ated with software specification and definition due to
the complexity of module sharing. However, we have
also seen a significant reduction in the cost of imple-
mentation and integration. We perceive that this ben-
efit will be even greater in the future once the founda-
tion is complete and fully deployed.

Along with the benefits of a common data model, there
are some associated risks. If the data model is not
well managed, there is a potential for the data size to
grow too large and complex. There is also a risk of
organizational boundaries inhibiting development of
shared modules if the sharing is not encouraged by
management.

The changing design paradigm and constant evolution
of technology brings forth a new set of challenges. A
data model driven architecture takes us a step closer
to a utopian �integrated, interactive, and incremental�
system.

Acknowledgments
We thank the members of the Nike Product Engineer-
ing teams in Santa Clara and Haifa who have designed
and implemented the software infrastructure as de-
scribed here: Mark Ball, Shiri Cohen, Nina
Galperovich, Miriam Kreisler, Ed Langlois, Neela
Majumder, and John Ramirez. We also thank mem-
bers of Nike Globals and Nike FCDE teams who were

an integral part of defining and implementing the Nike
data model architecture: Sridhar Boinapally, Vanco
Burzevski, Yi-Hung Chee, Gil Kleinfeld, Zoya Korovin,
Ronen Moldovan, Ran Ron, and Eric Tse. We thank
the members of the Nike Architecture Board for play-
ing a vital role in defining and consolidating the soft-
ware architecture: Doug Braun, Yi-Hung Chee,
Ganapathy Kumar, Mosur Mohan, and Siang-Chun
The.

We thank the members of the Nike Product Engineer-
ing teams in Santa Clara and Haifa who have designed
and implemented the software infrastructure as de-
scribed here: Mark Ball, Shiri Cohen, Nina
Galperovich, Miriam Kreisler, Ed Langlois, Neela
Majumder, and John Ramirez. We also thank mem-
bers of Nike Globals and Nike FCDE teams who were
an integral part of defining and implementing the Nike
data model architecture: Sridhar Boinapally, Vanco
Burzevski, Yi-Hung Chee, Gil Kleinfeld, Zoya Korovin,
Ronen Moldovan, Ran Ron, and Eric Tse. We thank
the members of the Nike Architecture Board for play-
ing a vital role in defining and consolidating the soft-
ware architecture: Doug Braun, Yi-Hung Chee,
Ganapathy Kumar, Mosur Mohan, and Siang-Chun
The.

References
[1] Semiconductor Industry Association, National

Technology Roadmap for Semiconductors,
1997.

Authors� Biographies
Veerapaneni Nagbhushan is currently a Nike software
architect. Prior to that, he worked on several CAD
tools at Intel. He holds a BE in electrical engineering
from Birla Institute of Technology and Science and a
M.S. in computer engineering from Syracuse Univer-
sity. Nagbhushan has been with Intel since 1987. His
e-mail is vnagbhus@scdt.intel.com.

Yehuda Shiran is Nike Product Engineering Manager
and Program Manager in Haifa. He holds a BSME
and an MSME from the Technion in Haifa, a Ph.DME
and an MSEE from Stanford, and an MBA from Haifa
University. Yehuda has been with Intel since 1991.
He previously worked in various Silicon Valley CAD
development companies. His current interests include
software development management infrastructure and
software development discipline. His e-mail is
yehuda.shiran@intel.com.

Satish Venkatesan is a senior CAD engineer in Santa
Clara. He holds a doctorate in computer engineering
from the University of Cincinnati and a BE in electrical
engineering from the University of Roorkee. Satish
has been with Intel since 1996. His e-mail is
satish@scdt.intel.com

Tamar Yehoshua is currently managing the Nike Prod-
uct Engineering team in Santa Clara and the PowerCAD
team that provides CAD tools for low-power design.
She holds a BA in applied mathematics from the Uni-
versity of Pennsylvania and an MS in computer sci-
ence from the Hebrew University in Jerusalem. Tamar
joined Intel�s Design Technology group in 1993 where
she has worked in CAD tool development and has
held management roles. Prior to joining Intel, Tamar
worked at the Institute for the Learning Sciences at
Northwestern University. Her e-mail is
tamar.yehoshua@intel.com.

Intel Technology Journal Q1�99

Nike�s Software Architecture and Infrastructure: Enabling Integrated Solutions for Gigahertz Designs 9

Circuit Design Environment and Layout Planning 1

Circuit Design Environment and Layout Planning

Bharat Krishna, NIKE-SC/Design Technology, Intel Corp.
Gil Kleinfeld, NIKE-HF/Design Technology, Intel Corp.

Index words: circuit design, layout planning

Abstract

Circuit design in deep sub-micron technologies requires
that designers deal with numerous data, constraints,
analysis, synthesis, and optimization tools. Although syn-
thesis tools are widely used at Intel, new circuit tech-
nologies are evolving and are often not well supported
by existing synthesis tools. Deep sub-micron technol-
ogy requires that the impact of physical design be con-
sidered early in the circuit design phase to prevent costly
circuit, layout, and sometimes, logic re-design. A com-
mon source of these re-designs is inaccurate assump-
tions about the layout aspects of the target design. Thus,
early layout planning and accurate parasitics estimation
must be done by circuit designers.

Intel�s FUB Circuit Design Environment (FCDE) is an
integrated, interactive, and incremental circuit design
environment that incorporates multiple tools, data, con-
straints, and analysis tools. FCDE integrates all circuit
design tools including circuit simulation, layout planning,
parasitics estimation, timing analysis, circuit optimizers.
Circuit design tools exchange data via a common data
model (Unified Core Model). FCDE tools expose their
functionality to each other by standard tool drivers that
allow integration of in-house design tools as well as ven-
dor design tools. FCDE was designed and implemented
on the Windows NT ∗ operating system, and uses na-
tive Windows* technologies such as Microsoft∗ Com-
ponent Object Model (COM), Visual Basic∗ and Vi-
sual Basic for Applications∗ (VBA). This paper de-
scribes Intel�s circuit design environment and its com-
ponents, with special emphasis on the layout planner,
and its role in circuit design flows.

Results from a recent microprocessor design project
support the need for layout planning by showing that
the amount of re-design and re-work required for blocks
is reduced when early layout planning is carried out.

Introduction

Traditional custom integrated circuit design methodol-
ogy can be depicted as a waterfall model, where a stage
(e.g., logic design) is completed and the results passed
on to the next stage (e.g., circuit design). Results at
each stage are evaluated without any consideration of
their effect on later stages. For example, interconnect
loading is assumed during circuit design for technology
mapping. This assumption is likely to be invalidated
during the layout design phase. Thus, the final layout is
analyzed to verify functionality. If there are problems,
then the layout is re-designed in an attempt to correct
them. If the redesigned layout fails to correct the prob-
lems, then a re-design at one of the previous stages in
the flow is attempted. This flow (shown in Figure 1) is
very time consuming and expensive due to the follow-
ing reasons.

Figure 1: Traditional custom IC design flow

• Many file formats. The design flow uses many
EDA tools. The tools may come from different
companies. Even though some standard file for-
mats (such as GDSII) have been accepted, there

∗ All other trademarks are the property of their respective
owners.

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 2

are still many different file formats that contain data
at different stages and many converters are needed
to enable a complete tool suite. The existence of
files as a means of data exchange also inhibits in-
teractive design. The hundreds of files generated
cause data storage problems, and maintaining data
consistency during the design cycle becomes an
issue.

• Unnecessary task partitioning. Different tools
have inconsistent user interfaces and may be used
by different engineers. This requires that the flow
be partitioned between many engineers, each of
whom focuses on local optimizations. Local opti-
mizations usually inhibit overall design optimiza-
tion as changes involve many engineers and can
take several days.

• Forces early binding. Early bindings are deci-
sions that are made at one stage that become hard
inputs to the next stage. It is very difficult to change
these input constraints later on in the flow, and
they therefore inhibit optimizations at later stages.

• Long iterations. Since many tools are involved in
a typical design flow, it takes too much time to
iterate a flow. Many different engineers would be
required to run their tools in the required order.
This latency also inhibits the engineers� productiv-
ity. A design is reloaded many times into different
tools, which significantly slows progress.

A New Methodology
A new design flow (shown in Figure 2) provides an
interactive design environment. It enables overlap-
ping of design stages so that the effects produced in
later stages of the design can be easily considered in
earlier stages. The overlap is enabled by providing
easy access to multiple tools and by using a common
data model across multiple domains. Since the sys-
tem is developed as a native Windows NT* applica-
tion, we make use of COM technology. All tools have
ActiveX ∗ interfaces such that one tool can invoke an-
other tool. This is very much like the functionality avail-
able with many of the Windows tools where, for ex-
ample, an Excel∗ spreadsheet can be created within a
Word∗ document. This obviates the need for designs
to exit a tool after saving its data, then to start another
tool with previous data to analyze what-if scenarios.
Since all the tools are required to understand a com-
mon data model, a tool can manipulate the design data,

and any changes are available to another application
to perform analysis or synthesis. This proposed meth-
odology increases the complexity of tool development
and necessitates the linking of internal data represen-
tations. However, the benefits of the new approach
to the designer outweigh its cost by providing an in-
stantaneous what-if glimpse across the traditional tool
boundaries.

Figure 2: New design flow

The rest of this paper focuses on the interaction be-
tween the circuit design and layout design stages. We
choose circuit and layout to illustrate the design stage
overlap concept, and these can be similarly extended
to other design domains. A workflow diagram illus-
trating the integrated design environment with these
functionalities is shown in Figure 3. We describe in
detail the functionality of the layout planner and show
the advantages of the proposed system on the speed
path optimization flow.

Layout Planner
Layout planning of datapath blocks has become very
important due to the increasing complexity of the
datapath and the tighter delay bounds imposed on criti-
cal signals. This is further emphasized by the increas-
ing impact of interconnect delay on overall path de-
lays. The layout planner provides functionality to esti-
mate area and interconnect parasitics. This also al-
lows the user to accomplish some layout tasks earlier,
such as global routing, congestion analysis, track plan-
ning, etc., which later reduce the layout design effort
significantly.∗ All other trademarks are the property of their respective

owners.

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 3

The layout planner is a very important component of
the circuit design environment. It has become neces-
sary to incorporate accurate layout information (e.g.,
interconnect delays) during the circuit design stage in
order to reduce design iterations. These iterations are
necessary when the final layout does not satisfy all the
assumptions made during the circuit design phase.
Generally, circuit and layout design are done by dif-
ferent designers, and contemporary tools inadequately
capture the design assumptions in the existing file for-
mats. Layout planning of blocks is used to obtain early
estimates for block area and timing of critical signals.
The layout-based estimates are used during the circuit
design stage to carry out more accurate circuit simula-
tions and to design the datapath circuit schematics.
The same layout plan is later used to drive the layout
synthesis process. The layout planning methodology
is designed with the following goals:

• be fast and highly interactive

• provide reasonable estimates for area and inter-
connects

• drive layout synthesis with a place and route plan

• enable what-if analysis and provide tradeoffs be-
tween accuracy and tool performance

The layout planning flow is developed from experi-
ence with prototypes used in some recent micropro-
cessor design projects. Early layout planning provides
a user with a means to estimate the layout area of a
datapath block and the associated interconnect
parasitics, which are used to perform quick perfor-
mance verification analysis. The information obtained
is then used to complete the design. The layout plan-
ning flow provides various trade-off points so that the
circuit designer can get better estimates on intercon-
nect design at the cost of tool performance. The user

Figure 3: Workflow diagram circuit and layout interaction

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 4

can estimate interconnect parasitics derived from mini-
mum spanning trees for rough estimates and actual glo-
bal routes for more accurate estimates.

Functionality
The inputs to the layout planning tool are design con-
straints, user-defined placement hints, and the netlist
(which may be incomplete). The tool provides a means
to visually see and edit the placement and change the
netlist. The netlist is modified if a cell used in the block
is changed because of higher drive strength require-
ments, or any other interconnect optimization need.
The key functions performed in the layout planning
stage for interconnect optimization are as follows:

• cell area estimation and interface design

• placement of cells (as part of vectors)

• identification of vectors and rows

• global routing and congestion analysis

• parasitic estimation and timing analysis

Placement Modeling
A key feature of the datapath layout planning is the
type of layout modeling that is used. Due to multiple
instantiations of logic cells, common in datapath blocks,
layout editing provides a means to edit groups of in-
stances in one command. The multiple instances of a
cell are grouped into entities known as vectors, the
contents of a stage in circuit design are placed in a
row, and the contents of a bit-slice form a column.
Thus, the complete layout plan is modeled as a matrix.
The tool then provides commands to move, delete,
create vectors, rows, matrices, etc. This kind of mod-
eling aids in ensuring regularity in the placement of cells
in the layout plan.

Interconnect Estimation and Optimization
During layout planning the design engineers need to
estimate the interconnect delays so that better data
can be input to the circuit simulation stage. The inter-
connect length can be estimated by generating the
Steiner tree [1, 2]. This estimation generates optimis-
tic net lengths, as trees are generated for one net at
time, and no consideration is given to obstructions or
congestion due to other nets. For this reason, net length
estimation also has a quick runtime.

Better net length estimates are generated by doing glo-
bal routing. Global routing accounts for obstructions
as well as congestion. It also considers physical net
specifications (width, spacing). This option for net
length estimation is slower than the Steiner estimation.

For clock and other critical nets, some other tree esti-
mation algorithm such as A-Tree [3] may also be used.

The layout planning tool provides these choices as
runtime configurable user options.

Track Share Analysis
After a reasonable placement has been determined,
the user is able to estimate interconnect parasitics. The
location of the interface ports of the cell can also be
planned to enable better routing [4, 5]. A typical rout-
ing, shown in Figure 4a can be improved with cell in-
terface ports planning as shown in Figure 4b. The
interface planning can be carried out using Track Share
Analysis (TSA) or global routing. Based on the re-
sults of global routing or TSA, the interface terminals
of the cells are placed at appropriate locations. The
net length estimation process was successfully used in
a recent project. By providing additional planning
capabilities, we have given the designer full control of
top-down as well as bottom-up aspects of datapath
block layout design.

Figure 4: Cell interface planning
Visualization
The interactive graphical user environment provides
other features. The user can plan for routing space
and analyze routing congestion information that is de-
rived from global routing. Based on the congestion
analysis, the user can manually adjust the placement
and plan out for area. The tool provides net visualiza-
tion and editing functionality to interactively optimize
the interconnect delay.

FCDE provides path viewing and debugging capabili-
ties and includes the following viewers:

1. Paths list viewer. This is a list of all paths, includ-
ing path properties (start point, end-point, mar-
gin, and more). The path list has links to a de-
tailed path viewer, a schematic editor, and a lay-
out planner.

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 5

2. Path detailed viewer/tracer. This viewer serves
as the main debugging aid for speed-path analysis
and optimization.

Incremental Design
The layout planning stage involves a lot of what-if analy-
sis work. For example, the user may want to change
the placement of a few instances and see how the area
or timing on those affected nets has changed. To aid
the user, the layout planner provides for incremental
design. In this mode, the tool detects what nets have
changed, and re-computes the desired properties for
the affected nets only. The tool is also able to display
the delta changes (difference between the property�s
old value and the new value). This allows the user to
see immediately if the changes made are having posi-
tive or negative effects. Another advantage of incre-
mental design is the efficient runtime, which is very
important for an interactive design tool.

Cell Area Estimation
As layout planning happens before any real layout is
created, an important requirement of the layout plan-
ner is to be able to estimate cell area from the netlist of
the cell. The cell area estimator can provide various
choices for estimation. We have estimated cell area in
two ways and are experimenting with others.

The first method is to use a statistically derived equa-
tion for estimating cell area. The function�s param-
eters include the number of devices, number of p-de-
vices, number of n-devices, and the number of I/O
ports. The second method is to use historical data. In
this method, a table is created for various common
types of cells, and the area of a cell is obtained by
matching it against an entry in the table.

Other methods that we are experimenting with include
the modification of the core engine of a cell synthesis
tool. This method is expected to provide the most
accurate estimates, but it is also expected to have the
longest runtime.

Parasitic Estimation
Interconnect parasitic (resistance and capacitance) es-
timation is required since this information translates
directly into delay information that can be used during
circuit simulation. The parasitic estimation tool is de-
signed to provide various run-time configurable op-
tions. These options allow the user to make tradeoffs
between runtime and accuracy of the estimates.

Timing Analysis
In order to enable interactive design, a quick timing
analysis engine is integrated into the layout planner.
The quick engine yields rough timing analysis, but pro-
vides reasonable information on changes that occur
when the layout plan is modified. Since the timing
analysis data (slopes, timing widows, etc.) are shared
between many circuit design tools (e.g., driver sizing),
the timing analysis tool is a separate component of the
circuit design environment. The layout planner invokes
this engine when required, and the process of trans-
ferring data is transparent to the user.

Noise Analysis
Noise on interconnect is becoming a more visible prob-
lem with deep sub-micron designs. At present, the
layout planner provides a means to visualize the noise
as aggressor-victim pairs. This helps the user plan
appropriate spacing between the aggressor and the
victim. Current experimental work is directed towards
auto identification of aggressors and victims. Based
on the net topology, timing vectors on adjoining nets,
and estimated cross-coupling capacitors, the proposed
tool will be able to compute if there are any signal
integrity issues, and then designers can either manu-
ally, or with the help of an automated router, reduce
the net cross-coupling.

Device Size Tuning
FCDE will provide tight bi-directional communication
with the schematic editor, a change notification sys-
tem, and incremental capabilities. Using these capa-
bilities, it will enable circuit designers to change the
size of a device or a cell in the schematic editor or in
one of the FCDE viewers. The change will be applied
on the FCDE data model, and incremental analysis
will be made to analyze this change.

New Functionality Enabled

Speed-Path Design
We describe the design environment and the advan-
tages of using it by looking at the speed-path design
activity commonly performed in IC design. This de-
sign activity encompasses both circuit design and lay-
out design. It uses several tools and various types of
data in both of the design domains. The flow of this
activity is shown in Figure 5.

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 6

Figure 5: Speed path optimization flow

Speed-path analysis and optimization flow start with
the timing verification stage when a circuit designer
receives timing constraints and budgeting. The de-
signer runs tools to identify critical paths. To optimize
the paths with violations, there are multiple possibili-
ties:

1. Increase the driver strength.

2. Reduce the driver load.

3. Optimize the interconnect loading.

The first two options are handled by the device-sizing
functionality in circuit design, and the last one is car-
ried out in layout design.

With current tools, all these activities (shown in Fig-
ure 5) are carried out by different tools. The data is
exchanged by means of files and often there are mul-
tiple design engineers involved. Since data files are
used, it is difficult to exchange partial data, i.e., com-
plete design data is exchanged between the tools. By
some estimates, it takes in the order of weeks to op-
timize a path if accurate interconnect loading is to be
obtained. The reason for this is that layout design is
carried out by a different person and the turn-around

time for obtaining data is long. The most common
reasons for the long turn-around time are that layout
design has to be completed before data is obtained,
and data interfacing is difficult. Thus, circuit design-
ers tend to optimize the paths using device sizing and
do not explore all possible solutions, such as optimiz-
ing the interconnect delay.

With the new integrated design environment, where
all the different tools are accessible via a common
user interface, the interconnects can be optimized as
easily as devices can be sized. Also, since all the
tools are working with the same data model, the data
is exchanged in memory. This enables interactive de-
sign, which provides an improved turn-around time
between various tools. Another advantage of the in-
tegrated design environment is that it provides the
capability for incremental design. Only data that is
modified by one tool needs to be addressed by other
affected tools. With the integrated layout planner, a
circuit designer is able to make changes to the block
layout plan without involving a different person to do
the layout design. Changes in interconnect parasitic
values are updated in the common data model, and
the timing analyzer is able to perform incremental
analysis of the change.

Noise Handling
Another activity the new environment enables is the
efficient handling of noise. It has become important to
account for noise as the operating voltage for deep
sub-micron design is decreasing, and the noise effect
is becoming more visible. Noise analysis also involves
information that is traditionally spread across both the
circuit design and layout design stages. As both of
these stages are tightly integrated in the new design
flow, all the information required for noise analysis is
available simultaneously.

Some of the noise analysis features made available
have been adapted from published work [6].

Results

Figure 6: Gains in design time

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 7

Our results are illustrated in the bar chart shown in
Figure 6. With the traditional approach, it is observed
that the effort spent in circuit and layout design was
almost equal. It is clear that when layout planning data
are available during the circuit design stage, the circuit
design time increases (about 1.25X). However, there
is a significant decrease in the layout design time, which
includes the time spent in fixing layout (about 1/3X).
This reduces the overall design time by about 25%.

For a typical datapath block, the average time for post-
layout fixing of critical paths improved from over two
weeks to less than a week when the prototype of the
proposed integrated design environment was used.

Future Work
Based on the layout plan, top-down cell templates are
generated that need to be synthesized. During circuit
design, these cells are placed and routed as per the
interconnect plans. However, if a cell cannot be syn-
thesized using top-down planning, a bottom-up cor-
rection to the overall block plan is generated. If sev-
eral such iterations occur, a significant productivity
penalty will be incurred. New cell synthesis algorithms
are needed that can handle the top-down topology
plans. Another area of exploration is to combine lay-
out information even earlier in the design cycle, namely
during logic synthesis. This will enable a designer to
appropriately choose static or domino technology to
meet the timing or area constraints and also insert the
right number of pipeline stages during datapath de-
sign. All these call for a modification of traditional
logic synthesis algorithms to account for layout effects.

Conclusion
By integrating circuit design with layout planning, we
have improved the overall design time. Using early
layout planning, we are able to incorporate accurate
interconnect parameters into circuit design. This gen-
erates better timing analysis results, which match the
actual post-layout timing analysis, thus reducing the
need for re-design and re-layout.

Results from a recent microprocessor design project
support the need for layout planning by showing that
the amount of re-design and re-work required is re-
duced for blocks when early layout planning is carried
out. In the speed path flow, expert design engineers
have observed a three to five times improvement rate
in the time it takes to fix violating paths.

Acknowledgments
We especially acknowledge Naresh Sehgal for valu-
able discussion and comments on the paper. We thank

Ehud Kedar (former FCDE group leader), Gil Amid
(Nike Timing analysis and circuit simulation group
leader), Eitan Zahavi (Nike system architect), and Paul
Madland (Intel Fellow, PMD circuit technology group)
who have all contributed significantly to FCDE archi-
tecture and vision. We also thank Anurag Gupta, V
Nagbhusan, and Manoj Gunwani from the Santa Clara
NIKE departement, and Anat Ben-Artzi, Ronan
Moldovan, and Arkady Neyshtadt from the Haifa
NIKE department. We also acknowledge various
members of other NIKE groups and the design teams
who contributed to the realization of this methodol-
ogy.

References
[1]M. R. Garry and D.S. Johnson, �The Rectilinear

Steiner Tree Problem is NP-complete, � SIAM
J. Appl. Math., Vol. 32, No. 4, pp. 826-834,
1977.

[2]J.P. Cohoon, D.S. Richards, and J.S. Salowe,
�A Linear-time Steiner tree routing Algorithm for
Terminals on the Boundary of a Rectangle, �
Digest of Technical Papers, ICCAD-88, pp.
402-405, Nov. 1988.

[3]J.J. Cong, K.S. Leung, and D. Zhou, �Perfor-
mance-driven interconnect design based on
distributed RC delay Model, � Proceedings
ACM/IEEE Design Automation Conference,
1993, pp. 606-611.

[4]B. Krishna, C.Y.R. Chen, and N. Sehgal,
�Technique for Planning of Terminal Locations of
Leaf Cells in Cell-Based Design,� Proceedings
of 11th International Conference On VLSI
Design, pp. 53-58, 1998.

[5]Amnon Baron Cohen and Michael Shechory,
�Track Assignment in the Pathway Datapath
Layout Assembler,� Digest of Technical
Papers 1991 IEEE International Conference
on Computer-Aided Design, pp. 102-105,
1991.

[6]D.A. Kirkpatrick and A.L. Sangiovanni-
Vencentelli, �Techniques for Crosstalk Avoid-
ance in Physical Design of High Performance
Digital Systems,� Digest of Technical Papers,
ICCAD-94, pp. 616-619, November 1994.

Authors� Biographies
Bharat Krishna is the layout planner project leader in
the NIKE/DT department. He received a M.S. de-
gree in computer engineering from Syracuse Univer-
sity in 1994 and a B.Sc. degree in electrical engineer-

Intel Technology Journal Q1�99

Circuit Design Environment and Layout Planning 8

ing from the University of Khartoum, Sudan in 1991.
He has worked for Intel since 1995 in the datapath
layout automation area. His interests include datapath
layout automation, VLSI routing, and physical CAD
tool design. His e-mail is bharat.krishna@intel.com.

Gil Kleinfeld is the FCDE group leader in the Nike/
DT department. He received a B.Sc. degree from Tel-
Aviv University in mathematics and computer science.
Gil has been working for Intel since 1988 in the areas
of logic synthesis and datapath automation. Gil�s main
interests are automation of tedious design and verifi-
cation tasks, and software design.
His e-mail is gil.kleinfeld@intel.com.

Challenges of CAD Development for Datapath Design 1

Challenges of CAD Development for Datapath Design

Tim Chan, Design Technology, Intel Corp.
Amit Chowdhary, Design Technology, Intel Corp.
Bharat Krishna, Design Technology, Intel Corp.
Artour Levin, Design Technology, Intel Corp.
Gary Meeker, Design Technology, Intel Corp.
Naresh Sehgal, Design Technology, Intel Corp.

Index words: datapath, synthesis, automation, and generation

Abstract

In many high-performance VLSI designs, including all
recent Intel microprocessors, datapath is imple-
mented in a bit-sliced structure to simultaneously ma-
nipulate multiple bits of data. The circuit and layout of
such structures are largely kept the same for each bit-
slice to achieve maximal performance, higher designer
productivity, and better layout density. There are very
few tools available to automate the design of a general
datapath structure, most of which is done manually.
Datapath design (from RTL to layout) very often takes
a significant amount of human resources in a project.
The design is becoming more complex and demand-
ing as the clock frequency is reaching 1GHz, and the
process technology is getting to 0.15um and below.
Issues with signal integrity, as well as leakage current,
are much more significant now as VCC and VT con-
tinue to be reduced and current density increases.
Elaborate analyses on noise and power are needed
for future designs, beyond the already complex tim-
ing, reliability, and functional correctness analysis tasks.
The burden on CAD tools to support the high-perfor-
mance microprocessor design is bigger than ever. This
paper reviews the general approaches used in the in-
dustry to design datapaths from RTL to layout with
the difficulties and issues encountered. We propose a
new design workflow and a set of tools to improve
overall designer productivity, while meeting all other
constraints. A description of these tools to support
the next generation of microprocessor design is also
presented. Our proposed flow allows a designer to
choose a design methodology ranging from a fully au-
tomated one to a custom one, to a flexible mix of the
two. We present a new paradigm of early binding that

considers the impact of circuit and layout during RTL
design. We also strive to preserve RTL regularity during
the circuit and layout design to improve time-to-mar-
ket. Finally, we present some results on actual design
blocks with the proposed tools and workflow, and
we suggest future areas for further research.

I. Introduction

In most microprocessor design projects, the design
team includes computer architects (particularly impor-
tant for a design with new architecture), micro-archi-
tects (who determine the amount of hardware resources
to be put in the chip and how the major data flow
occurs), logic designers, circuit designers, and layout
designers. Sometimes, these designers may have over-
lapping functions (for example, doing both circuit and
layout design) depending on the experience level of
the designers and the project management philoso-
phy. Nevertheless, in general, designers of different
disciplines need to communicate at different levels of
design abstraction, and a design can only be com-
pleted when design data at different abstraction levels
are consistent with each other and correct, meeting
the design objectives.

1.1. Traditional Datapath Design Flow

For most high-performance microprocessors, the
workflow for datapath design involves many labor-
intensive steps [1, 2]. Logic designers and micro-
architects determine the detailed features of hardware
and the methods used to achieve particular functions.
The number of pipe stages and which operations go
with each pipe stage are also determined. These de-
cisions are made with the help of bottom-up circuit

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 2

feasibility studies and some estimation tools for timing
and area. The processes of developing the most ap-
propriate computer architecture, micro-architecture,
or RTL are also very involved, but they are beyond
the scope of this paper. The starting point of the
workflow is a partition of RTL coding for which timing
and area estimations have been made and the results
are within acceptance tolerance.

Figure 1: Datapath design flow

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 3

1.1.1. RTL to Initial Circuit Translation and
Floor Planning
A circuit designer needs to study the functionality of
the block first and then come up with the initial imple-
mentation plan that includes logic stages (without com-
plete transistor sizing), floor planning, and circuit styles,
based on different timing, area, and routing constraints.
Depending on how experienced the designer is with
the design techniques required for the block, feasibil-
ity studies and evaluations of a few design options are
generally required to arrive at an implementation plan.

1.1.2. Schematic Design and Interconnect
Estimation
The process of schematic design and interconnect es-
timation follows. As interconnect capacitance can be
a significant portion of the total capacitance of a sig-
nal, a designer has to estimate the interconnects based
on the assumptions made in his/her floor plan. In or-
der to get a reasonable floor plan before actual layout
is available, layout cell areas and pin/port locations
are estimated. The �estimated� layout cells will be
tiled according to the floor plan. With this rough
datapath cell placement completed, interconnect lengths
can be estimated based on the cell locations.

Circuit topology, transistor sizes, and floor plans will
continue to evolve until a satisfactory design imple-
mentation is reached (though sometimes, the design
specifications and external interfaces might also need
to be modified). Once the schematic database for the
datapath block is established, many checks and analy-
sis can be performed.

1.1.3. Design Analysis
Next, the design with transistor sizes and interconnect
RC�s can be analyzed quite accurately for timing and
many other circuit robustness requirements such as
race conditions, noise tolerance, and long-term de-
vice and interconnect reliability. If the results of the
analysis are not acceptable, the routing, cell place-
ment, schematic design, RTL design or a combination
of these will need to be modified.

1.1.4. Custom Layout and Post-Layout Checks
When the schematic with the corresponding estimated
layout is satisfactory, layout can then be custom de-
signed. Incorrect assumptions used in the estimated
layout are corrected, and manual placement optimiza-
tion is used.

When actual layout is completed, RC extraction is
performed, and the RC netlists are merged back into
the schematic netlist. At this point, all analyses of tim-
ing, noise, and circuit robustness are performed on

the �accurate� netlist to verify that the design with ac-
tual layout data still meets the design requirements. If
there is any problem found with the design, the design
process is iterated until the design requirements are
met.

With the top-down design process, even though the
design requirements at one point are met, since other
blocks in the chip might require design changes, the
block needs to go through the Engineering Change
Order (ECO) process. This is a formal procedure to
communicate and implement changes to meet new re-
quirements. In other words, the design process is re-
entered.

1.2. Issues with Traditional Datapath Design
Flow
This design process mentioned above is quite top-down
driven and sequential. From RTL to circuit and then
to layout, each step makes a set of assumptions/esti-
mations and provides more accurate information than
the previous step. Each step of the design process
also takes a significant amount of time to finish. As a
result, poor estimations in early steps have very costly
consequences due to the amount of time and effort
required to make changes. In a large design project
with a large team, the problems get multiplied many
times over when poor estimates from one team mem-
ber affect the design of other team members. As de-
sign specs are changing, implementations are not stable.
Both become moving targets, and communication
overhead increases substantially. As we have observed,
large projects tend to require a long time for design
convergence (i.e., when different pieces fit together
and meet project requirements), and they have lower
design productivity.

1.3. The Direction of Higher Levels of Automa-
tion
The accuracy of early estimations, and the turnaround
time for the major design steps (e.g., RTL to circuit
design) are very important elements when considering
productivity in the design process. (Company cul-
ture, team maturity, design and management experi-
ence level are also part of the puzzle; however, these
are not discussed in this paper.) Interestingly, more
accurate early estimates and faster turnaround time
can both be achieved with design automation. Auto-
mation that provides the correct result quickly can
shorten the turnaround time, and it can also give more
accurate estimations for the options that designers want
to explore by quickly implementing these options.
Though it is by no means easy to automate the design
for high-speed complex microprocessor design using
deep sub-micron technology, a lot of effort has al-

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 4

ready been made in the academic arena and by EDA
companies. Automatic datapath cell layout genera-
tion and datapath block place and route tools are now
commercially available. Compilation to datapath cir-
cuit-level netlist from hardware description language
is also getting popular (in the less performance-critical
designs such as chip set design). Over time, manual
circuit and layout design techniques are digested by
CAD developers who then formulate methods and
heuristics to solve these design problems with CAD
tools. However, this work is just not done soon enough
to alleviate the burden of the designers for high-per-
formance designs.

1.4. Structure of the Paper
The objective of this paper is to share our view of the
high-performance datapath design problems and our
ideas of what the solutions will look like, by providing
some details of our work. Naturally, we don�t have
all the answers, but we believe that we have some
good ideas about how these problems should be ap-
proached. It is hoped that this paper will stimulate
readers to come up with more and better ideas.

The next section describes a more automated workflow
compared to the workflow just described. The new
workflow features automatic schematic generation
from RTL and layout synthesis. The techniques of regu-
larity extraction and how they are used in logic syn-
thesis and schematic generation are discussed in the
section on datapath logic synthesis. An efficient ap-
proach to design datapath schematics and to layout
planning together is described in the section on datapath
layout planning and placement. Accurate and efficient
RC estimation is essential to various steps of the de-
sign process, and it is discussed in the section on the
parasitic estimator. Datapath cell layout synthesis sig-
nificantly reduces layout design resources for high-per-
formance design, and it is discussed in the section on
layout cell generation.

II. A More Automated Design Flow
A new workflow, which drastically improves produc-
tivity, is shown in Figure 2. It supports synthesis from
RTL to layout, though with the understanding that
datapath synthesis techniques will take time to ma-
ture. Designers input and user interfaces are essential
to every step of the process.

Figure 2: A more automated datapath design flow

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 5

The rest of this section describes the rationale behind
each component of the design flow and gives the high-
level expectations of these steps.

2.1. Regularity Extraction
In this workflow, regularity extraction is performed
first to identify the repeated functionalities in RTL and
to come up with optimal logic templates for logic syn-
thesis at later stages. A good template needs to con-
tain a few stages of logic (at least) to allow for the
synthesis tool to perform optimization; however, it can-
not be too large (containing too many logic functions)
such that a lower level of regularity in circuit and lay-
out cannot be exploited and therefore cause device
density and performance to suffer as a result. In fact,
the main reason for doing regularity extraction is the
inability of the current synthesis tools to produce regular
structures from RTLs for repeating functions. Sec-
ondly, with a logical netlist available from regularity
extraction, designers can control the degree of regu-
larity used in synthesis and modify the outcome of syn-
thesis more easily.

2.2. Design Partitioning
This step is performed to identify what circuit style to
use for different parts of the design. The commonly
known circuit styles are static and dynamic. Normally,
static is the first choice due to the robust nature of the
style and the ease of design. However, in terms of
speed, dynamic circuits are generally about 30% faster,
and this style needs to be used when the speed of the
circuit is critical. The price of using dynamic circuits is
higher power consumption and greater design effort.
As for high fanin logic, the use of dynamic circuits is
more advantageous. Thus, a design partitioner is ex-
pected to estimate the timing performance of the
datapath block with static circuits and single out the
paths that are not meeting the performance require-
ments. Once some sections of the logic have been
identified for dynamic circuit implementation, the log-
ics going in as input to these dynamic circuits need to
be considered as candidates for dynamic implemen-
tation as well, in order to ensure correct circuit func-
tionality.

Also, it is expected that the current logic synthesis tools
are not able to produce optimized results for complex
special functions, such as a 32-bit adder (which in-
volves a lot of special circuit techniques and fine-tun-
ing). A datapath macro cell library (probably with
special macro cell-sizing techniques) needs to be used
to supplement the deficiency of current synthesis tools.
As a result, the design partitioner needs to identify the
logic functions that should be supported by a macro
cell library (such as adders, register files, and com-

parators) and later target those functions for macro
cell mapping and sizing.

2.3. Schematic Hierarchy and Floor Plan Direc-
tive Generation
Schematic hierarchy generation follows after design
partitioning is done, and even though at this point no
actual logic gate or transistors have been mapped, a
schematic hierarchy with logic templates can be cre-
ated. With schematics, circuit designers can profi-
ciently modify the design partitioning and hierarchy for
better synthesis results. Again, it is not expected that
perfect results can be achieved by the design
partitioner, and input from the designer is very crucial
at this point. With regularity reflected in the hierarchi-
cal schematics, designers can modify the datapath cell
placement directives (for placing cells into rows and
bit columns) that are created by tools using heuristics.

2.4. Integrated Logic Synthesis and Placement
System
Once the partitioner has been given input for synthesis
and directives for placement, the integrated synthesis
and placement phase is entered. The main reason an
integrated system for synthesis and placement is needed
is that doing logic synthesis without placement infor-
mation does not give good enough results for future
process technologies (0.15um or below). Transistor
intrinsic delay continues to improve, and the average
percentage of interconnect capacitance over the total
node capacitance continues to increase. Interconnect
delay has become an important component in very
high-performance design, and the traditional wire load
model used in control logic synthesis is not adequate
for high-performance datapath synthesis. Placement
information (in turn, RC information) needs to be avail-
able for the synthesis tool for correct sizing, buffering,
signal repeating, and circuit topology choice.

2.5. Integrated Schematic Design and Layout
Planning Environment
In the same spirit, designers need to be able to inter-
act with schematics (outcome of synthesis), and place-
ment needs to be integrated into the design tools. The
tools have to efficiently support modifications of sche-
matics and placement (RCs) by the designers, and be
quickly able to communicate the changes among them-
selves to enable designers to see the effects of their
changes (on timing, area, power, and noise, etc.).

2.6. Layout Cell Generation
When logic synthesis and global placement are com-
pleted, layout cells at the layout hierarchy assigned by
the placement tool are then generated. A lot of meth-

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 6

odology definitions have to be completed before lay-
out generation, such as power griding structures and
usage of metal layers for cell pins and ports. Metal
width and space requirements for reliability and noise
concerns are also considered.

Layout cell generation is not the only way to create
the bottom hierarchy of the layout. Library cells can
also be used as in the traditional control logic layout
synthesis. The layout quality of library cells is expected
to improve as more effort has been put into library
cells that are expected to be used by different projects.
However, layout density might not be as good when
compared to layout done with cell generation, since
cell generation processes more devices together and
has the opportunity to achieve better optimization.

2.7. Detailed Place and Route
After layout cells are generated, they can be used for
detailed place and route (which is the process of gen-
erating DRC-clean placement and routing, based on
the approximate (sometimes incomplete) results from
global placement and routing. If global place and route
are done well, it is expected that detailed place and
route will only change the RC results by 5%. When a
DRC-clean layout is completed, RC extraction can
be performed, and all the necessary post-layout analy-
sis can then be done with accurate RC information.
The analyses normally include electrical rule checks,
noise, timing violations, and setup and hold time checks
(min-delay analysis).

Now that we have outlined the overall design flow, we
focus on the details of the major design steps in the
following sections.

III. Datapath Logic Synthesis
Logic synthesis, which transforms a design from RTL
to circuit level, has been widely studied for control
logic. Logic synthesis [5, 6] involves two steps: logic
minimization followed by technology mapping to a user-
specified library. Datapath circuits possess a very high
degree of regularity that has to be preserved through-
out the design process to achieve high density and
performance. If the traditional logic synthesis approach
based on logic minimization is used, then some regu-
larity would be lost, resulting in inferior results. There-
fore, an ideal datapath synthesis approach should first
extract the regularity inherent in RTL descriptions prior
to mapping the circuit to a desired technology. The
extracted regularity results in a design hierarchy, which
should be preserved to achieve high design quality as
well as productivity.

We propose a novel methodology for logic synthesis
of datapath circuits, where the datapath regularity is
first extracted and then the circuit is mapped to a de-

sired technology while preserving regularity. The in-
put to our synthesis approach is an RTL description of
a datapath circuit. Regularity in the circuit implies the
existence of subcircuits, called templates, which have
multiple instances in the circuit. Regularity extraction
first identifies a sufficiently large set of templates and
their instances, and then completely covers the circuit
by a subset of these template instances. The template
instances are then grouped to form datapath vectors.
A schematic of the datapath is generated using these
vectors and the boundary constraints on the I/O buses
and signals. The schematic helps the designer in un-
derstanding the circuit and in making important deci-
sions about or changes to the templates and vectors
identified so far. The next step is to map the templates
to static and dynamic logic as desired, thus resulting in
efficient multi-technology designs. Finally, the mapped
templates are sized according to the loading on the
primary outputs of the circuit.

Figure 3: HDL description of a small datapath
circuit used to illustrate our synthesis approach

We describe below in detail the various steps in our
synthesis methodology of datapath circuits. We ex-
plain our methodology with the aid of the circuit in
Figure 3 (the corresponding logic diagram is shown in
Figure 4).

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 7

3.1. Regularity Extraction Techniques
The task of regularity extraction is to identify a set of
templates and their instances from the RTL descrip-
tion of the circuit (template generation step), and
then to cover the given circuit by a subset of these
templates (circuit covering step), where the objec-
tive is to use large templates that have a large number
of instances. Figure 5 illustrates a circuit cover with
four templates, where template T1 has six instances,
T2 has three instances, and so on. The extraction
step involves a tradeoff, since a large template usually
has a few instances, while a small template has a high
number of instances. Note that the template com-
posed of T2 followed by T1 has only three instances,
compared to six instances of T1. Usually, a large tem-
plate implies a better optimization of area and perfor-
mance, while a template with more instances requires
less design effort, assuming a template is synthesized
only once for all its instances.

Figure 4: Logic diagram of the circuit of figure 3;
the four templates shown here form a circuit cover

Several techniques for extraction of functional regu-
larity have been proposed in the literature [3, 4, 8, 9,
10, 11, 12]. Most of these techniques focus on cov-
ering a circuit by templates, assuming that a library of
templates is provided by the user. Very few tech-
niques address the problem of generating a good set
of templates. Given a library of templates, Corazao
et al. [8, 11] address the problem of mapping a circuit
described at a behavioral level using templates from
the target library. Their approach addresses several
key subproblems, such as finding complete as well as
partial matches of a template and selecting a good set
of templates to optimize the clock period. Rao and

Kurdahi [12] represent the input circuit as well as tem-
plates from the given library by strings, and they use a
string matching algorithm to find all instances of the
template in the circuit. These authors present heuris-
tics to generate a set of templates; the final cover is
highly sensitive to these templates. Odawara et al.
[9] present a methodology to identify structural regu-
larity in highly regular datapaths. In their method,
latches driven by the same control signals as initial tem-
plates are chosen and used to grow larger templates.
Odawara�s approach identifies one-dimensional regu-
larity in terms of bit-slices of the datapath. Other ap-
proaches by Nijssen et al. [10] and Arikati et al. [3]
extend Odawara�s methodology to identify bit slices
as well as stages of datapath circuits. These structural
methods perform well for highly regular circuits, but
might not work for circuits with a mix of datapath and
control logic. A problem similar to regularity extrac-
tion is technology mapping, where the input circuit is
covered by cells (templates) from a given library.
Keutzer [7] proposed partitioning the circuit into
rooted trees and then mapping the trees using library
cells, by using dynamic programming. All the above-
mentioned techniques address the problem of cover-
ing a circuit by templates, where the templates are ei-
ther provided by the user or generated in an ad hoc
manner. None of these techniques deal with the sys-
tematic generation of a set of templates for a given
circuit.

We have designed an efficient and robust approach
for extraction of functional regularity [13, 14], where
the set of all possible templates is generated automati-
cally for the input circuit under two simplifying, yet
practical assumptions: (a) only maximal templates are
considered, where a template is maximal if and only if
all its instances are not entirely covered by instances
of another template, and (b) input permutations of gates
in the RTL description are ignored. The number of
templates is reduced to within V2, where V is the num-
ber of components in the circuit. We have demon-
strated that a wide range of efficient covers are ob-
tained for various benchmarks from the set of tem-
plates generated by our approach [13]. Since a suffi-
ciently large set of templates is generated, and the binate
covering problem is inherently difficult [5], we employ
simple and efficient heuristics to cover the circuit. Our
approach recursively selects a template from the com-
plete set of templates, based on one of the following
heuristics, and deletes all its non-overlapping instances
from the input circuit, until the entire circuit is covered.

(a) Largest-fit-first (LFF) heuristic: select the tem-
plate with the maximum area, where the area of
every component is given.

(b) Most-frequent-fit-first (MFF) heuristic: select the
template with the maximum number of instances.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 8

These two heuristics give different covers; other heu-
ristics can be used to generate a range of covers from
which the designer can choose the most desirable cover.
In fact, we can represent the set of covers by a tem-
plate hierarchy, where regularity among different tem-
plates is recursively extracted [14]. In the event that a
template is specified by the designer, using our ap-
proach, all its instances can be generated and used for
finding a cover. Thus, a cover, which is a mix of auto-
matically extracted and user-specified templates, can
be generated. (We have filed a patent on our regular-
ity extraction approach [15]).

3.2. Vector Identification
So far, we have generated templates using functional
regularity [13] without accounting for the circuit struc-
ture in terms of the interconnections among the tem-
plate instances. As a result, the templates do not di-
rectly correlate with the datapath vectors. For ex-
ample, the six instances of template T1 in Figure 4
should belong to two different vectors. (Here, a vec-
tor is defined as a set of template instances that are
grouped together for subsequent synthesis and layout
stages.) We now consider structural regularity to trans-
form templates into datapath vectors [13]. We ex-
plain the steps of vector identification using the ex-
ample of Figure 4; the resulting vectors are shown in
Figure 5.

• Simple vectors: The instances of a template are
partitioned into vectors, which we call simple vec-
tors. For example, the template T1 of Figure 4 is
partitioned into two simple vectors, SV1 with two
instances and SV2 with four instances. The re-
maining templates result in a single simple vector
each.

• Composite vectors: Simple vectors of different
templates are grouped, if possible, to form com-
posite vectors. For example, simple vector SV1
of template T1 is grouped with the simple vector
of template T3 to form a composite vector V1
(see Figure 5).

The resulting vectors of the template cover of Figure 4
are shown in Figure 5. We use a set of efficient heu-
ristics to group template instances to form simple or
composite vectors. These heuristics are listed below.

1. Control/data inputs: The input signals of template
instances are classified as control or data from the
HDL description of Figure 3, e.g., sel1 is a con-
trol signal, while a[0] is a data signal. The in-
stances with the same control inputs and similar
data inputs are grouped together.

2. Output signal name: The instances whose out-
puts drive the same bus are grouped together. For
example, the instances of templates T2 and T4

are grouped together, since their outputs form the
bus g[3:0].

3. Circuit topology: Two template instances are
grouped in the same vector, only if one of them is
not in the transitive fanin of another. This heuristic
will ensure that the template T1 (Figure 4) would
be partitioned into at least two simple vectors, since
two of its instances are in the transitive fanin of
two other instances.

Figure 5: Schematic of example circuit obtained
after forming vectors from the templates of Figure 4

3.3. Schematic Generation
A schematic of the datapath circuit is generated using
the vectors identified earlier and the control/data as-
signment to the signals. The schematic for the ex-
ample circuit is shown in Figure 5. The schematic is
essential to allow designers to control the design pro-
cess: (a) they can get a much better understanding of
the circuit than they could from the HDL description;
(b) they can modify the design hierarchy and floorplan
by merging/breaking templates or vectors, changing
the control/data orientation of signals, and modifying
the order of vectors. An example of such a modifica-
tion is merging templates T2 and T1 to form a larger
template with three instances, which might lead to better
optimization during subsequent steps.

3.4. Technology Mapping
The input to technology mapping is the set of datapath
vectors and the I/O timing requirements in terms of
input arrival times and output loads. The partition of

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 9

the circuit into vectors (or underlying templates) al-
lows the designer to select a desired technology for
each template independently. Currently, our synthesis
flow assumes that the mapping of templates is per-
formed manually, which can be easily automated due
to the small size of templates. We explain several
choices for mapping of templates.

Figure 6: Several mappings of template T1 (Figure
4) to static and dynamic logic

• Static logic: The traditional approach of mapping
a circuit to static logic first decomposes the circuit
into smaller directed-acyclic graphs (DAGs) [5,
7] and then independently maps each DAG to the
specified library of static cells. In our case, the
templates are small enough to be mapped directly
without any decomposition. Figure 6 illustrates
two mappings of template T1 (Figure 4) to static
logic. Here, mapping 2 is suitable for template T1
in vector V3 of Figure 5, since one of the data
input signals arrives later than the other. On the
other hand, mapping 1 is suitable for T1 in vector
V1 (Figure 5). Thus, depending on the template
usage in the circuit, we might have to use several
mappings of a template.

• Dynamic logic: A template can be mapped to
dynamic logic to achieve better timing; however,
noise-related issues have to be considered, such
as the length of the input and output signals of the
template. Figure 4 also shows a mapping of tem-
plate T1 (Figure 4) to dynamic logic. We are look-
ing into automating the mapping of templates to
dynamic logic.

• Macro cells: Datapath circuits employ commonly
occurring logic blocks, such as incrementers,
adders, shifters, etc. A library of various map-
pings of these specialized datapath blocks for a
range of area, performance, and power values will
be required. For example, the incrementer in the
example circuit of Figures 3 - 5 can be replaced
by one of its mapped versions prior to extracting
regularity from the HDL description; our synthesis

flow would then result in vectors V1 and V3 shown
in Figure 5, while V2 would correspond to a macro
cell.

3.5. Gate Sizing
Once all the templates of a circuit are mapped to the
desired technology, every gate is sized to satisfy the
output load requirements. The output load capaci-
tance of a gate comprises the following components:

1. Gate capacitance: The capacitance values of the
gates driven by this particular gate are available
after the technology mapping step.

2. Diffusion capacitance: The diffusion capacitance
of the gate is also known after technology map-
ping.

3. Interconnect capacitance: The capacitance is
available only after the post-synthesis steps of
floorplanning and RC estimation. Therefore, in-
terconnect capacitance is used only in the gate-
sizing step in the subsequent design iterations.

4. Primary output load capacitance: The load ca-
pacitance is already specified for the primary out-
puts of the circuit.

The sizing of the gates of the mapped circuit is per-
formed starting from the primary outputs and travers-
ing back to the primary inputs, where the output load
requirement is satisfied for every gate encountered. If
there are loops in the circuit, then the gate sizes will
take a few iterations to converge.

Different instances of a template mapping will be sized
differently depending on the output load requirements.
In general, a template with multiple instances can have
several mappings, where each mapping can have sev-
eral different gate sizes.

Gate sizing is performed again after the interconnect
capacitance values are obtained from the floorplanning
and RC estimation steps.

3.6. Results
While the steps of technology mapping and sizing are
still under development, we have implemented proto-
types for regularity extraction and vector identifica-
tion. We list below the results of regularity extraction
and vector identification on two datapath blocks in
terms of the number of templates, vectors, and their
instances.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 10

We have defined an index, called a regularity index,
to evaluate the results of regularity extraction [13]. The
regularity index is defined as the percentage of the
number of logic components in all the templates to the
total number of logic components in the circuit. The
regularity index correlates to the reduction in the de-
sign effort, assuming that a template is not synthesized
multiple times for its multiple instances.

IV. Datapath Block Floorplanning and Place-
ment

4.1. Objectives of Layout Planning

Layout planning of datapath blocks is used to obtain
early estimates for block area and timing of critical
signals. The layout-based estimates are used during
the circuit design stage to carry out more accurate cir-
cuit simulations and design of datapath circuit sche-
matics. Layout planning support should provide the
following:

• speed and high interactivity (to enable
what-if analysis)

• reasonable estimates for area and
parasitics

• tradeoffs between accuracy and tool per-
formance

We have developed a set of tools, based on experi-
ence from a recent microprocessor design project.
These tools provide a user with the means to estimate
the layout area of a datapath block and the intercon-
nect parasitics from which quick timing analysis can
be performed. The designers can also estimate inter-
connect parasitics derived from minimum spanning trees
for rough estimates and actual global routes for more
accurate estimates.

4.2. Tasks in Layout Planning

The inputs to the tools are top-down block pin inter-
face, user-defined placement hints, and the netlist (which
may be incomplete). The tool provides a means to
visually see and edit the placement and change the
netlist. The netlist is modified if a cell used in the block
is changed because of the need for higher drive strength
or other interconnect optimization requirements. The
key functions performed in the layout planning stage
for interconnect optimization are as follows:

• cell area estimation and interface design

• identification of vectors and rows

• placement of cell instances (as part of vec-
tors)

• global routing and congestion analysis

• parasitic estimation and timing analysis

A key feature of the datapath layout planning is the
layout modeling. Due to the frequent occurrence of
multiple instantiations of a logic cell in datapath blocks,
an entity called a vector is created to represent a group
of instances, and layout editing on these groups of in-
stances is supported. Further, it is also observed that
the contents of a stage in the circuit design are placed
in a row and that the contents of a bit-slice are placed
in a column. Thus the complete layout plan is mod-
eled as a matrix. Commands are then provided to
move, delete, and/or create vectors, rows, matrices,
etc. This method of layout modeling helps ensure regu-
larity in the placement of cells in the layout plan.

After a reasonable placement has been determined, a
designer will then estimate interconnect parasitics.
Location of interface ports of the cell can also be
planned to enable better routing [16, 17]. The inter-
face planning can be carried out using Track Share
Analysis (TSA) or global routing. Based on the re-
sults of the global routing or the TSA, the interface
terminals (pins and ports) of the cells are placed at
appropriate locations, and the net length estimation
process proceeds.

An interactive graphical user environment has been
developed to support this layout planning process.
This environment also provides other features. A user
can plan for routing space and analyze routing con-
gestion information, which is derived from global rout-
ing. Based on the congestion analysis, the user can
manually adjust the placement and plan out for area.
The environment also provides net visualization and
editing functionality to interactively optimize the inter-
connect delay. The overall design flow for layout plan-
ning is shown in Figure 7.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 11

Figure 7: Layout planning design flow

4.3. Benefits of Layout Planning
From a recent Intel microprocessor design project,
effort analysis indicated that when early layout plan-
ning is carried out, the amount of re-design and re-
work required is reduced by approximately half. This
benefit is expected to be even more significant in the
future when we have more stringent and complex de-
sign requirements.

4.4. The Challenges in Datapath Auto Place-
ment
Placement is a very critical stage in the datapath lay-
out design flow as it can make or break regularity,
area, and timing specifications. If a designer starts out
with a bad placement, it is extremely difficult for the
router to make up for it.

The main difference between datapath placement and
Random Logic Synthesis (RLS) placement is the need
to maintain regularity and hierarchy. Maintaining regu-
larity in datapath placement offers several advantages.
The circuit designer can rely on the regularity to use
his intuition about critical paths. Regular layout tends

to be more dense because of the reduction in the num-
ber of jogs/bends and because the designers can spend
more time on optimizing one bit-slice. Regularity and
hierarchy in layout are also very useful in reducing ECO
time.

Timing and area constraints also tend to be much more
critical for datapath blocks than RLS blocks. Unlike
RLS blocks, datapath blocks are often made from
custom designed cells that don�t come with all the tim-
ing characterization data. This poses additional chal-
lenges for timing-driven placement algorithms.

Not all datapaths are fully regular, and they show dif-
fering amounts of irregularity, something the datapath
auto-placement algorithm must contend with.

Traditional auto placement techniques, based on math-
ematical programming (usually with a quadratic ob-
jective function) or simulated annealing, can be modi-
fied to deal with the unique requirements of datapath
placement with varying degrees of success. Techniques
based on quadratic programming tend to be faster,
but the rigid formulation makes it difficult to directly
model the regularity requirements.

V. RC Estimation
Increased use of noise sensitive dynamic circuits, lower
supply voltages, and increasing current density have
made more extensive interconnect analyses a require-
ment in the design process. Such effects must be
modeled at all stages of the design process. Estima-
tion of the effects of interconnects and device parasitics
must be accurate and consistent at all stages of the
design in order to avoid unnecessary design iterations.
Accurate parasitic estimation in the datapath design
flow depends on both the prediction of the physical
properties of the interconnects and devices (topology,
routing layers, density, device layout, etc.) and on the
accurate modeling of the parasitic effects of the de-
vices and routing.

5.1. Layout Estimation Techniques
A wide range of layout estimation techniques are in
use in design tools, ranging from wire length estima-
tion to detailed net topology estimation. Such tech-
niques are based on a set of rules, such as default
routing layers, widths, and spacing, and on net topol-
ogy generation algorithms such as a minimum span-
ning tree or Steiner tree (minimum length routing tree
with horizontal and vertical wires). Some estimates
may account for metal density or routing congestion
constraints. The accuracy of layout estimation is de-
pendent on the state of the design data. Estimated
layout based on a globally routed floorplan may be
very close to the final detailed routing, while schematic-

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 12

based estimates using little physical design data may
correspond poorly with the final design. Thus, the
quality of the estimated layout is highly dependent on
how well the datapath design tools provide an early
estimation of the physical design.

5.2. Parasitics Modeling Techniques
The modeling of process-related effects is a fairly
mature field, with a wide range of tools, models, and
techniques in use. Models range from empirical, easy
to evaluate equations [20], to computationally inten-
sive field solvers [19]. A wide range of parasitics�
modeling tools are available both commercially and
from universities. Commercially available tools pro-
vide reasonable accuracy (within 10% of field solv-
ers) on large designs, and field solver accuracy is pos-
sible on a per-net basis [21]. Most commercial tools
handle only post-layout parasitic extraction and are
suitable only for final verification of designs. Many
analysis tools and physical design tools (such as cir-
cuit analysis tools or global routers) have built-in para-
sitic estimation capability to estimate the effect of in-
terconnect parasitics, but such tools cover only a part
of the design process. The models used by these tools
may not make use of all available design data, and
inconsistency in the parasitics models used by differ-
ent tools may result in poor convergence of the design
and increased design cycle time. In addition, the built-
in estimation may not accurately model cross capaci-
tance and may not easily extend to new types of analysis
required in the design flow.

5.3. Parasitic Estimation
Our work on parasitic estimation in the datapath de-
sign process focuses on accurate, consistent parasitic
estimation at all stages of the design. The first and
perhaps most important element in the accurate esti-
mation of parasitics is the datapath design flow itself,
particularly the close interaction and sharing of design
data between the tools in the flow. The next element
is the flexibility of the parasitic estimation tool to handle
design data at all stages of completion, and the ability
to support the wide range of constraints and assump-
tions required at each stage of the design. An exten-
sive net specification system is an integral part of the
design tool suite, providing designers the ability to
specify a wide range of properties on the nets in the
design. These net specifications are used by the para-
sitic estimation capability to ensure that the parasitic
estimates accurately reflect the designer�s intentions.

The parasitic estimation capability works by using all
available design data to build a description of each of
the nets in the design as well as the environment sur-
rounding the nets. The estimator is based on a com-
mon representation of the layout and connectivity data.
Design data from various tools in the datapath design

flow are translated into this representation. Before
the final stage of the design, when the layout is com-
plete, the data for the nets will be incomplete. For
example, in the floorplanning stages, the net�s routing
topology will not be available. Using a range of as-
sumptions, the missing net data will be estimated.
These assumptions may be tuned to match a particu-
lar layout design style. A key advance over existing
parasitic estimation tools is that we are able to make
use of any real layout data that exists. Estimated lay-
out is used only when necessary to complete a net�s
representation. Since even drawn layout may not rep-
resent the final design, the estimator provides the ca-
pability to ignore any existing layout and replace it with
estimated layout.

Next, the appropriate model is used to estimate the
parasitics for each net. In our datapath design flow,
the parasitic estimation tool is able to make use of a
mix of input data sources and assumptions. We have
developed a consistent set of models of varying accu-
racy that are built into the estimation tool. These models
estimate interconnect and device resistance and ca-
pacitance, including cross capacitance. The estimator
applies the appropriate model based on the source of
the input data. The model used depends on the con-
fidence of the original design data. Higher accuracy
models are used when there is higher confidence in
the design data. For example, an estimation based on
a floorplan for a preliminary schematic need not use a
high-accuracy model since the design is likely to
change, while in the later stages of the design when
much of the layout is complete, a high-accuracy model
is needed to estimate cross capacitance between the
nets.

The flexibility provided by the parasitic estimator al-
lows the same tool to be used at all stages of the
datapath design and helps ensure consistent results of
the analyses at each stage of the design. It should be
emphasized that the effectiveness of the parasitic esti-
mator is dependent on the consistency of the results of
each of the stages of the design process in the sense
that the design at any stage provides an accurate esti-
mation of the next stage and a reasonable early esti-
mate of the final design. As shown in the other sec-
tions of this paper, this will be the case.

5.4. Results
Our initial results have shown that the parasitic esti-
mator provides superior accuracy compared to the
estimators used in existing point tools in the current
datapath design flow. The benefits of the estimator
will increase further when it is consistently used in the
complete datapath design flow.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 13

VI. Layout Cell Generation
The research in the field of cell synthesis was started
more than 15 years ago [42]. Most of this research
has focused on the generation of so-called 1-dimen-
sional (1D) layouts when transistors are arranged in a
linear fashion to minimize the number of diffusion
breaks. First approximated algorithm for this layout
style has been suggested by Uehara and VanCleemput
[42]. Maziasz and Hayes [37] presented the first op-
timal algorithm.

Unfortunately 1D layout style is suitable only for small
cells with fully complementary non-ratioed series-par-
allel CMOS circuits. Multiple attempts to extend this
style have been made to handle more complicated cir-
cuit structures [23, 24, 31, 33, 36, 39].

Analysis of manually drawn layouts shows that �two-
dimensional� (2D) layouts must be generated. Vari-
ous approaches have been taken to address this prob-
lem [26, 27, 28, 29, 30, 40, 41, 43].

Though some of these leaf-cell layout systems have
been applied successfully in ASIC flows, no commer-
cially available system today has the capabilities to
address the requirements of a custom design flow such
as microprocessor design, where layout cell design
involves a number of complex requirements. As chip
designs approach GHz frequencies, reliability verifi-
cation (RV) constraints, arising from the electro-mi-
gration and self-heat phenomenon, have also proven
to be a critical factor in the generation of leaf-cell lay-
outs.

6.1. Feature Requirements

A cell layout generation system is being looked into by
us [44]. The system has to enable automated layout
generation to produce cells that are optimized for vari-
ous constraints such as density, performance, RV, and
power. Its goal is to increase cell design productivity.

The system should include the following features:

• Ability to handle several hundred devices with
various types of top-down constraints such as pre-
routes, keep-out regions, pin/port preferred loca-
tions, etc.

• Easy configuration for various design domains
(standard cell libraries, datapath bit-cells and bit-
slice synthesis, custom cell design, etc.) and dif-
ferent circuit design methodology. Users should

be able to define their own cell architecture rules.

• True 2D placement with RV constraints that al-
lows simultaneous placement of cell instances and
devices.

• Automatic stack and/or device-based legging with
optional user control.

• Incremental area routing.

• Incremental compaction with different types of
gridding constraints.

• Link with schematic editor.

• Powerful ECO mode / family generation / pro-
cess migration capabilities.

• On-line RV estimation, DRC, and OpenChecker.

• Integrated with a layout editing system to allow
manual intervention at any stage, ranging from
push-button mode (fully automatic) to an interac-
tive mode with unlimited manual intervention.

6.2. System Overview

In order to implement this layout generation system,
five main components are required: a placer, a router,
an RV analyzer, a compactor, and a family generator
and change manager. A layout generation flow can be
built around these five components (Figure 8). This
flow can either be fully automated, or it can be guided
and enhanced by a layout designer wherever required.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 14

Figure 8: Layout synthesis flow

6.2.1. Placer

In the generation of a layout for any schematic, a large
amount of effort is spent in transferring the netlist to
the layout editor, ordering the devices, and then de-
termining the best placement for those devices. The
placer has to handle a capacity for several hundred
devices and be able to do two-dimensional device
placement. It should also have provisions for top-
down constraints, RV constraints, and an incremental
placement capability.

6.2.2. Router

Once the devices have been placed, the connections
between them have to be made. These are done by
the routing module. Manual pre-routing of critical nets
is allowed, and often encouraged, to meet strict timing

or port location guidelines. The router interacts with
the RV estimator to deduce the optimal routing shapes
for critical nets based on given RV constraints. Once
the optimal routing topologies have been determined,
the actual routing itself is done by a detailed router.
To improve routing quality, the router module refines
the placement based on congestion analysis.

6.2.3. RV Analyzer

At different stages of the work flow, RV estimations
are required to produce layouts that are optimized for
reliability constraints. The RV estimator is based on
worst-case current analysis through static modeling of
current switching. It has a built-in current-solving en-
gine that traverses through nets to compute worst-case
interconnect currents from the switching of the device
stacks. Based on the results of the analysis, the mod-
ule identifies objects that are electro-migration and self-
heat limited. The RV analysis can potentially lead to a
re-ordering of devices, a change in routing topology,
or a change in wire and via geometries.

6.2.4. Compactor

This is used to compact the area and resolve design
rule violations, as well as for putting pins on grid for
supporting the routing flow at the next level of design
hierarchy. It can be configured by a wide range of
options to support a specific working flow.

6.2.5. Family Generator and Change Manager

While generating cell libraries, several cells of similar
topologies need to be created, the differences usually
being ones of device sizing, with minor changes in
schematic, legging, etc. The same situation is also en-
countered if the schematics are revised after the lay-
out has been done. Since such changes don�t modify
the fundamental layout topology, we can generate sub-
sequent cells from a starting prototype or template.
This is done by creating a mapping between the netlists
of the template and the desired cell, followed by re-
sizing, and adding or deleting devices or legs as nec-
essary. Using the family generation module, the layout
designer only has to lay out a couple of representative
cells of a cell family. The layouts for all the other mem-
bers of the same cell family are then generated auto-
matically. This feature can also be used for process
migration.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 15

Each of the above steps are independent of each other:
for example, the devices may be manually placed and
then automatically routed, or, cells drawn manually may
be used as templates for family generation, and so on.
This ensures improved layout design productivity with-
out compromising the layout quality.

6.3. Results
Initial usage of a prototype version of the cell genera-
tion system at Intel Corporation shows significant pro-
ductivity improvement over manual design for various
kinds of cells, while meeting all layout quality require-
ments such as density, reliability, power, and timing.

VII. Future Challenges
It is expected that with continuous process technol-
ogy advancement and the growing need for higher
performance chips, the problems in datapath design
will continue to increase and become more complex.
Granted, not all problems are known or understood
at this time. There are a number of problems that we
are dealing with currently, which will get much worse
in the future. They are as follows:

• Handling of coupling noise problems (prima-
rily due to capacitive coupling). A substantial
amount of effort is currently required to verify and
correct the design to ensure correct silicon be-
havior. Techniques to generate correct-by-con-
struction noise problem-free circuit and layout are
essential.

• Timing analysis to include effects of noise
(power noise, capacitive coupling, and induc-
tive coupling). Guard banding (in timing analysis
cycle time or interconnect capacitance) is often
used to account for the effect of noise. However
over-conservatism would result if the guard band-
ing is done for the worst-case scenario. If some
statistical averages are used in guard banding, there
might be serious escapes, which can cause prob-
lems in silicon. Hence, it is necessary to have the
ability to include the effects of noise accurately in
timing analysis.

• New circuit techniques. Traditional static CMOS
and domino logic circuits have worked well so
far. However, with the continuous decrease in
power supply voltage and the increased demand
in chip performance, new circuit design styles have
to be investigated to achieve a better delay-power
product and to meet other design requirements.

VIII. Conclusion
In this paper, we have presented the challenges in
datapath design and our ideas to meet these challenges

through datapath logic synthesis, layout planning, in-
terconnect RC estimation, and layout cell generation.
We believe that datapath design requires substantially
more automation to be able to meet future require-
ments: �system on a chip� and demand for higher per-
formance and deep sub-micron geometries. We hope
that this paper stimulates more interest in both aca-
demic and commercial CAD arenas to tackle the prob-
lems in high-performance datapath design.

Acknowledgments
We thank Nagbhushan Veerapaneni who contributed
to the paper in the area of auto placement. We also
thank Marian Lacey, Mysore Sriram, Bharat Bhushan,
and Lin Chao who reviewed this paper and gave valu-
able feedback.

References
[1] D.E. Hoffman, �Deep Submicron Design Tech-
niques for the 500MHz IBM S/390 G5 Custom
Microprocessor,� Proc. of ICCD 1998.

[2] S. Posluszny, �Design Methdology for a 1.0
GHz Microprocessor,� Proc. of ICCD 1998.

[3] S. R. Arikati and R. Varadarajan, �A signature
based approach to regularity extraction,� Proc. of
ICCAD, November 1997, pp. 542-545.

[4] M. Hirsch and D. Siewiorek, �Automatically
extracting structures from a logical design,� Proc. of
ICCAD, November 1988, pp. 456-459.

[5] G. de Micheli, Synthesis and Optimization of
Digital Circuits, McGraw Hill, New York, 1990.

[6] E. Detjens, et al., �Technology mapping in
MIS,� Proc. of ICCAD, November, 1987, pp.
116-119.

[7] K. Keutzer, Dagon, �Technology binding and
local optimization by DAG matching,� Proc. of
DAC, June 1987.

[8] M. R.Corazao, et al., �Performance optimiza-
tion using template matching for datapath-intensive
high-level synthesis,� IEEE Trans. on CAD, 15(8),
August 1996, pp. 877-887.

[9] G. Odawara, et al., �Partitioning and placement
technique for CMOS gate arrays,� IEEE Trans. on
CAD, May 1987, pp. 355-363.

[10] R.X.T. Nijseen, and C. A. J. van Eijk, �Regular
layout generation of logically optimized datapaths,�
Proc. of ISPD, 1997, pp. 42-47.

[11] J. M. Rabaey, et al,. �Fast prototyping of
datapath-intensive architectures,� IEEE Design and
Test of Computers, June 1991, pp. 40-51.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 16

[12] D. S. Rao and F. J. Kurdahi, �On clustering for
maximal regularity extraction,� IEEE Trans. on
CAD, 12(8), August 1993, pp. 1198-1208.

[13] A. Chowdhary, et al., �A general approach for
regularity extraction in datapath circuits,� Proc. of
ICCAD, November 1998, pp. 332-339.

[14] A. Chowdhary, et al., �Extraction of functional
regularity in datapath circuits,� IEEE Trans. on
CAD, submitted November 1998.

[15] A. Chowdhary, et al., �A systematic approach
for regularity extraction,� U.S. Patent, filed Novem-
ber 7, 1998.

[16] B. Krishna, C.Y.R. Chen, and N. Sehgal,
�Technique for Planning of Terminal locations of
Leaf Cells in Cell-Based Design,� Proc. 11th Inter-
national Conference On VLSI Design, pp. 53-58,
1998.

[17] Amnon Baron Cohen, Michael Shechory,
�Track Assignment in the Pathway Datapath Layout
Assembler,� Digest of Technical Papers 1991
IEEE International Conference on Computer-
Aided Design, pp. 102-105, 1991.

[18] J. Cohn, L. Pillage, and I. Young, �Tutorial 4:
Digital Circuit Interconnect: Issues, Models, Analy-
sis, and Design,� IEEE/ACM International Con-
ference on CAD-94.

[19] J. R. Phillips and J. White, �A Precorrected-
FFT Method for Capacitance Extraction of Compli-
cated 3-D Structures,� Proc. ICCAD-94, pp. 268-
271.

[20] N. Delorme, M. Belleville, and J. Chilo,
�Inductance and Capacitance Analysis Formulas for
VLSI Interconnects,� Electronics Letters, vol. 32,
no. 11, May 1996.

[21] Y.L. Le Coz , R.B. Iverson, H.J. Greub, P.M.
Campbell, and J.F. McDonald, �Application of a
Floating-Random-Walk Algorithm for Extracting
Capacitances in a Realistic HBT Fast-Risc RAM
Cell,� Proc. 11th International VLSI Multilevel
Interconnection Conference, Santa Clara, CA, pp.
342-4, June 1994.

[22] D.G. Baltus and J.Allen, �SOLO: A generator
of efficient layouts from optimized MOS circuit
schematics,� Proc. 25th ACM/IEEE Design Auto-
mation Conferenec, pp. 445-452, June 1988.

[23] B.Basaran, �Optimal Diffusion Sharing in
Digital and Analog CMOS Layout,� Ph.D. Disserta-
tion, Carnegie Mellon University, CMU Report No.
CMUCAD-97-21, May 1997.

[24] J.Burns and J.Feldman, �C5M: A Control
Logic Layout Synthesis System for High-Perfor-

mance Microprocessors,� Proc. ISPD�97, pp. 110-
115.

[25] C.C.Chen and S.L.Chow, �The layout synthe-
sizer: An automatic netlist-to-layout system,� Proc.
26th ACM/IEEE Design Automation Conference,
pp. 232-238, June 1989.

[26] S.Chow, H.Chang, J.Lam, and Y.Liao, �The
Layout Synthesizer: An Automatic Block Generation
System,� Proc. CICC 1992, pp. 11.1.1-11.1.4.

[27] J.Cohn, D.Garrod, R.Rutenba, and L.R.Carley,
Analog Device-Level Layout Automation, Kluwer
Academic Publishers, Boston MA, 1994.

[28] M.Fukui, N.Shinomiya, and T.Akino, �A New
Layout Synthesis for Leaf Cell Design,� Proc. 1995
ASP-DAC, pp. 259-263.

[29] A.Gupta and J.Hayes, �Width Minimization of
Two-Dimensional CMOS Cells Using Integer Linear
Programming,� Proc. ICCAD 1996, pp.660-667.

[30] A.Gupta and J.Hayes, �CLIP: An Optimizing
Layout Generator for Two-Dimensional CMOS
Cells,� Proc. 34th DAC 1997, pp.452-4557.

[31] A. Gupta and J. Hayes, �Optimal 2-D Cell
Layout with Integrated Transistor Folding,� Proc.
ICCAD 1998, pp.128-135.

[32] M. Guruswamy, R. Maziasz, D. Dulitz, S.
Raman, V. Chiluvuri, A. Fernandez, and L. Jones
�CELLERITY: A Fully Automatic Layout Synthesis
System for Standard Cell Libraries,� Proc DAC�97,
pp. 327-332.

[33] Y-C. Hsieh, C-Y. Hwang, Y-L. Lin, and Y-C.
Hsu, �LiB: A CMOS cell compiler,� IEEE Transac-
tions on Computer Aided Design, Vol. 10, pp.
994-1005, August 1991.

[34] Chi Yi Hwang, Yung-Ching Hsieh, Youn-Long
Lin, and Yu-Chin Hsu, �An Efficient Layout Style for
Two-Metal CMOS Leaf Cells and its Automatic
Synthesis,� IEEE Transactions on Computer
Aided Design, Vol. 12, pp. 410-423, March 1993.

[35] M. Lefebvre, C. Chan, and G. Martin, �Tran-
sistor placement and interconnect algorithms for leaf
cell synthesis,� EDAC-90, pp. 119-123, 1990.

[36] M. Lefebvre and D. Scoll, �PicasoII: A CMOS
Leaf Cell Synthesis System,� Proc. 1992 MCNC
Intl. Workshop on Layout Synthesis, Vol. 2, pp.
207-219.

[37] R.Maziasz and J.Hayes, �Layout Minimiza-
tion of CMOS Cells,� Kluwer Academic Publish-
ers, Boston, 1992.

[38] C.L. Ong, J.T. Li and C.Y. Lo, �GENAC: An
automatic cell synthesis tool,� Proc. 26th ACM/

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 17

IEEE Design Automation Conference, pp. 239-
244, June 1989.

[39] C.Poirier, �Excellerator: Custom CMOS Leaf
Cell Layout Generation, � IEEE Trans. on CAD,
8(7), July 1989, pp. 744-755.

[40] S. Saika, M. Fukui, N. Shinomiya, and T.
Akino, �A Two-Dimensional Transistor Placement
Algorithm for Cell Synthesis and its Application to
Standard Cells,� IEICE Trans. Fund., E80-A(10),
Oct.1997, pp. 1883-1891.

[41] K. Tani, K. Izumi, M. Kashimura, T. Matsuda,
and T. Fujii, �Two-Dimensional Layout Synthesis for
Large-Scale CMOS Circuits,� Proc ICCAD 1992,
pp.490-493.

[42] T. Uehara and W.M. VanCleemput, �Optimal
Layout of CMOS Functional Arrays,� IEEE
Transactions on Computers, C-30(5), May 1981,
pp. 305-312.

[43] H. Xia, M. Lefebvre, and D. Vinke, �Optimiza-
tion-Based Placement Algorithm for BiCMOS Leaf
Cell Generation,� IEEE J.Solid State Circ., 29(10),
October 1994, pp. 1227-1237.

[44] B.Basaran, K.Ganesh, A.Levin, R.Lau,
M.McCoo, S.Rangarajan, and N.Sehgal, �GeneSys
- A Layout Synthesis System for GHz VLSI De-
signs,� Proc. 12th International Conference on VLSI
Design, January 1999, pp. 458-452.

Authors� Biographies

Tim Chan is currently a CAD tool system architect at
Intel. He received his B.Sc. and M. Phil. in electrical
engineering from the University of Hong Kong in 1980
and 1984 respectively. He joined Intel in 1990 as a
senior VLSI designer. His technical interests include
high-speed circuit design, microprocessor design meth-
odology, and logic synthesis. His e-mail is
tim.w.chan@intel.com.

Amit Chowdhary is a senior CAD engineer at Intel.
He received his Ph.D. in computer science and engi-
neering from the University of Michigan, Ann Arbor in
1997. He joined Intel in 1997 and is working on the
datapath automation project in Design Technology
(Microprocessors Products Group). His technical in-
terests include high-level and logic synthesis, technol-
ogy mapping, and timing analysis. His e-mail is
amit.chowdhary@intel.com.

Bharat Krishna is a senior CAD engineer in the Mi-
croprocessors Product Group at Intel. He received

an M.S. in computer engineering from Syracuse Uni-
versity in 1994 and a B.Sc. in electrical engineering
from the University of Khartoum, Sudan in 1991. He
has been working in Intel since 1995, and he is the
project leader for the layout planner tool. His inter-
ests include datapath layout automation and VLSI rout-
ing. His e-mail is bharat.krishna@intel.com.

Artour Levin is a staff CAD engineer at Intel. He re-
ceived his MS in Math from Belarus State University
in 1986 and Ph.D. in Computer Science from the same
University in 1990. He joined Intel in 1995 and is
working on CAD tool and methodology development
in the Microprocessors Product Group. His interests
include discrete mathematics, combinatorial optimiza-
tion, CAD algorithms and design methodology.
His e-mail address is alevin@scdt.intel.com.

Gary Meeker Jr. is a senior CAD engineer at Intel.
He received his BSEE from Carnegie Mellon Univer-
sity in 1990 and his MSEE from UC Berkeley in 1994.
He joined Intel in 1994 and is working on CAD tool
and methodology development in the Microproces-
sors Product Group. His interests include parasitic
extraction and estimation tools, algorithms, and mod-
els. His e-mail is gmeeker@scdt.intel.com.

Naresh Sehgal is currently managing the Datapath Tool
Development Group for next-generation processor
design at Intel. He received his B.S. in EE from Punjab
Engineering College in India, followed by an M.S. and
Ph.D. in computer engineering from Syracuse Univer-
sity, NY. Naresh has been with Intel since 1988, and
his research interests include CAD algorithms and
design methodology. His e-mail is
naresh.sehgal@intel.com.

CAD Design Flows Development in a Cross-Platform
Computing Environment

Shesha Krishnapura, Computing Technology/Design Technology, Intel Corp.
Ty Tang, Computing Technology/Design Technology, Intel Corp.
Vipul Lal, Computing Technology/Design Technology, Intel Corp.

Index words: NT∗ , UNIX*, mixed-flow, cross-platform

∗ All other brand names are the property of their respective owners.

Abstract
With the advent of low-price, high-performance Intel
architecture workstations together with Microsoft∗
Windows NT* operating systems (referred to as IA-
NT from here on) that support Microsoft productivity
tools, the IA-NT workstation has become the pre-
ferred desktop for CAD design engineers. However,
due to the complexity of migrating UNIX*-centric
legacy CAD tools and scripts to an NT environment,
a mixed operating system platform for CAD design
has become a computing reality. This paper describes
the innovative technical solutions for a production-ca-
pable NT-UNIX cross-platform CAD design flow
environment for development, maintenance, and de-
ployment activities. Although the target systems cho-
sen are the ones used in Design Technology at Intel,
our solutions are applicable to other cross-operating
systems.

The NT-UNIX platform poses various technical chal-
lenges when developing the CAD design flows con-
sisting of tools from both platforms. These tools have
to work together on a shared design database while
effectively utilizing common infrastructure scripts, de-
spite the fact that each computing platform supports a
different scripting environment.

To meet some of these challenges, we developed two
technologies that allow seamless integration of soft-
ware, designed for either the UNIX or NT platform,
into a platform-independent production usage envi-
ronment. These two technologies have been used to
port more than 45 tools made up of more than
3,000,000 lines of code from UNIX to NT, and to
execute more than 1,000 test flows, as well as to de-
velop a few mixed NT-UNIX applications.

Introduction
Traditionally, Intel has been using high-end UNIX*-
based RISC workstations for microprocessor design
activity. However there are emerging compelling rea-
sons why this traditional design environment should
change to incorporate the IA-NT workstation. The
main reasons for this change are as follows:

1. The advent of low-priced, high-performance Intel
architecture workstations coupled with Windows
NT* operating systems (IA-NT), which make IA-
NT a formidable alternative to UNIX-RISC
workstations.

2. The maturity of NT towards a stable, scalable
operating system that supports high-end CAD
applications.

3. Next-generation Intel CAD tools are moving
from the legacy single CAD design environment,
which is driven by scripts through command line
interface, to a new kind of CAD environment. This
new environment incorporates CAD design tools
and office productivity tools into a tightly integrated
visual cockpit that uses modern distributed com-
puting components and Internet-driven technol-
ogy that support multiple simultaneous CAD de-
sign environments. The IA-NT workstation pro-
vides an excellent development and design envi-
ronment for these new-generation CAD applica-
tions.

In reality, we cannot convert the existing UNIX-RISC-
based design flow to an IA-NT base in a single step
due to the following reasons:

1. Many of the design automation tools are based on
UNIX-centric scripts that are not easily ported to
an NT environment.

CAD Design Flows Development in a Cross-Platform Computing Environment 1

∗ All other trademarks are the property of their respective
owners.

2. Some of the internal CAD tools are tightly inte-
grated with external CAD tools that are not avail-
able on NT.

3. The current design team skill set is UNIX-centric
and would need to be updated for NT-centric
design work.

4. Microprocessor design teams in the midst of
projects cannot handle a change in environment
due to the nature and complexity of such a change.
This means that IA-NT can only be used on new
projects.

The solution to converting to IA-NT therefore is to
have a transition phase to support a production-ca-
pable mixed NT-UNIX design flow environment. To
achieve this transition phase, the following needs to be
done:

1. Build a robust NT-UNIX mixed computing envi-
ronment with a shared file system. This will sup-
port the IA-NT Desktop with backend IA-NT
and UNIX compute servers (see Figure 1).

2. Migrate high compute usage CAD design flows,
comprised of tools and scripts from UNIX, to
native NT and keep UNIX-centric legacy tools,
which use low computing power, on UNIX.

3. Develop cross-platform utilities for production use
for a mixed NT-UNIX design environment where
CAD tools on NT and UNIX are used in a seam-
less fashion.

4. Develop next-generation CAD tools native to IA-
NT.

In this paper, we limit our discussion to the NT-UNIX
cross-platform environment. We outline the various
challenges faced and the techniques employed for the
production use of a mixed NT-UNIX environment for
CAD tool development in Design Technology.

Overview of Existing Design Environment
The existing design environment at Intel is UNIX-cen-
tric. It consists of tightly integrated CAD tools, scripts,
and design data that are in the order of tens of millions
of lines of code. A significant portion of the tools and
scripts are legacy codes that have been shared among
generations of engineers and are hard to replace.

From a high-level point of view, the design tools,
scripts, and data can be grouped into following four
main categories, in which the first two categories are
part of the CAD design tools development environ-
ment and the last two categories are part of the micro-
processor design project environment:

1. Design Tools: A set of internally developed and

external vendor CAD tools that are tightly
coupled by UNIX-centric �glue� scripts into a
tool suite.

2. Gluing Utilities: These are scripts and small
programs that integrate the various tool com-
ponents in a tool suite into a functional design
environment for microprocessor designs at Intel.
Some of the tasks include internal to external
tools data format translation, data extraction
from netlists, simulation, wave form analysis, and
design database management.

3. Microprocessor Design Project Utilities: Sets
of scripts and programs developed by design
automation engineers in design projects to vali-
date design logic, process design data, gener-
ate design models, analyze performance, etc.

4. Designer Private Utilities: Scripts and pro-
grams developed by individual design engineers
to aid them in their work such as analyzing and
filtering design data, generating test stimuli, run-
ning tools in a particular sequence, etc.

This complex environment is represented in Figure 2.

In the next sections we describe the technical chal-
lenges we faced while developing CAD design flows
in a mixed NT-UNIX environment, and we outline
some of the innovative technical solutions we adopted
to overcome these challenges.

Figure 1: Simplified view of NT-UNIX mixed
environment

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 2

UNIX* to NT* Migration and NT-UNIX Cross-
Platform Challenges

The complexity of the existing UNIX-based design
environment at Intel makes it impractical to convert to
a homogeneous NT environment in one step. The
viable solution is to develop a heterogeneous UNIX-
NT integrated design environment and convert more
and more UNIX-centric components to IA-NT over
time.

As with the migration of any operating system, the
migration of an existing UNIX-based CAD design
environment to a mixed NT-UNIX design environ-
ment presents us with a number of technical challenges
of which the major ones are as follows:

1. New applications developed for or ported to
NT depend on reusable components available
only on UNIX. These reusable components in-
clude

• external vendor tools and libraries

• internal libraries that have not been ported or are
not portable to NT

• legacy design data in a database that can only be
accessed on a specific UNIX platform

1. Design flows that execute a set of tools, all of
which may not be available on a single platform.

2. The demand for common infrastructure scripts
to drive the tools on both UNIX and NT is dif-
ficult to meet since the scripting environment on
NT is not fully mature and is not 100% compat-
ible with the UNIX scripting environment.

3. How to maintain a single test system and test
vectors for cross-platform validation.

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 3

Figure 2: Simplified view of UNIX-based design environment

Innovative Solutions for an NT-UNIX Cross-
Platform Development Environment

The compile-time client-server model and the run-time
client-server model were developed and integrated into
the mixed NT-UNIX design environment to overcome
the challenges detailed above. These models allow
for the seamless integration of software developed for
either UNIX or NT platforms into a platform-inde-
pendent NT-UNIX CAD development and design
environment.

In the following sections, we describe these technolo-
gies and outline the problems they solve, the architec-
tural details, and our pilot results.

Compile-Time Client-Server Model
The compile-time client-server model allows UNIX*-
based layered CAD applications to be migrated to
IA-NT architecture in a situation where a complete

migration to NT* is not practically feasible due to ei-
ther the non-availability of vendor-provided compo-
nents or non- portable internal legacy tools/libraries.

The UNIX-based layered application for a CAD lay-
out capability is described in Figure 3. In this applica-
tion, the Data Management (DM) engine is a vendor
library integrated with an internal application not na-
tive to an NT platform. The figure shows the client-
server application designed for an external DM en-
gine using the innovative solution Inter Tool Commu-
nication Library (ITC) and integrated with a layout
application. The architecture and functional compo-
nents of the ITC library are described below.

The Inter Tool Communication Library for
Compile-Time Client-Server Architecture
An important component of the compile-time client-
server model is the ITC library, which provides inter-
tool communication functionality for client-server ap-
plications.

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 4

Figure 3: CAD layout application in single and multi OS platforms

Figure 4: Compile-time client-server architecture

The aim of the ITC library is to provide the following:

• a reliable, recoverable, trackable, and efficient NT-
UNIX communication channel with simple APIs
for point-to-point inter-tool communication be-
tween a client running on an IA-NT system and a
server running on a UNIX system

• transparent handling of Byte ordering between
RISC and IA architecture

• transparent handling of NT-UNIX path conver-
sion

• interface code to engineer compile-time client-
server model for rapid implementation with built-
in message build/extract capability and remote
function execution mechanism

In this paper we do not focus on the implementation
details of the ITC library APIs. Nonetheless, the next
two figures clearly illustrate the interaction between an
NT-client application and a UNIX server to remotely
execute the extended features provided by libraries
available only on UNIX. Figure 5 shows the interac-
tion between the various ITC APIs on the NT client
and the UNIX server describing the execution flow.
Figure 6 shows a sample DMclient-DMserver appli-
cation of which the UNIX-DMserver provides the NT-
DMclient with complementary database access and
management capabilities supplied by a UNIX-centric
DM library not available on the IA-NT. The master
server is capable of supporting multiple clients as shown
in the figure.

The summary of the interaction between the client and
server is as follows:

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 5

Figure 5: Interaction between NT client and UNIX server execution flow

• The client connects to the DMserver.

• The server forks off a slave server to process the
client.

• The master server is free to handle incoming cli-
ents.

• The slave server, which is dedicated for each cli-
ent, exits after servicing the client.

Over the past two years, the CAD organization at Intel
has successfully migrated many tools to IA-NT and
developed new IA-NT resident tools using this client-
server technology.

The compile-time client-server technique is valid for
the migration of any one platform to another platform.
Until the complete set of native CAD tools and librar-
ies are available to IA-NT, including the external ven-
dor tools, this technology remains a good intermedi-
ate solution for the unavailable software components
during UNIX to IA-NT migrations.

Run-Time Client-Server Model
Run-time client-server platform independent execu-
tion capability is a transition technology to enable the
integration of a mixed NT*-UNIX* design environ-
ment. Its main aim is to address the very problems
that prevent the design organization from moving di-

rectly to a pure IA-NT compute environment: not hav-
ing the complete set of design CAD tools on IA-NT
and having legacy UNIX-centric design data, infra-
structure, and gluing scripts that cannot be ported to
IA-NT.

The idea behind run-time client-server platform inde-
pendent execution technology is to extend the remote
procedure call concept to a remote execution envi-
ronment. The result is a tool environment that allows
transparent execution of CAD tools in a mixed NT-
UNIX environment. In this cross-platform environ-
ment, the user will be working on an NT desktop and
executing design commands from a remote UNIX
Xterm using the same familiar design flow written in
scripts. The user view is illustrated in Figure 7.

Run-Time Client-Server Architecture

The main components of the run-time client-server
platform independent tool execution environment as
shown in Figure 8 are a UNIX server daemon, an NT
server service, and CAD tools and scripts that are set
up to run in this environment.

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 6

Figure 6: Execution flows between IA-NT DMclient application and UNIX DMserver

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 7

Every tool executable in this environment has two
complementary components, namely the tool execut-
able itself and the tool stub, each of which is running
on different platforms. The tool stub is a wrapper that
launches the tool executable on the remote system.

Figure 8: Overview of the run-time client-server
platform independent execution environment

When a tool stub is executed on the local system, it
takes a snapshot of the run-time environment on the
local system and communicates this information to the
server daemon (or service). The server impersonates

the user, duplicates the run-time environment (with the
necessary system path conversion and platform spe-
cific adjustment), and invokes the actual tool execut-
able. The server also handles the routing of STDIO
streams to the tool stub and passes the exit code of
the tool executable to the tool stub. The tool stub
exits with the same exit code.

A sample CAD design flow consisting of three tools
working in a cross-platform execution environment
using the above stated run-time client-server archi-

tecture is shown in Figure 9.

Figure 7: User view of run-time client-server platform independent execution environment

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 8

The run-time client-server platform independent ex-
ecution environment provides the following features
to enable transparent remote tool execution:

1. Conversion and customization of the run-time tool
environment. The run-time environment on the
local system is duplicated on the remote system
for tool execution.

2. NT and UNIX shared file-system support so that
it can handle the tool stubs, executables, data, and
output files residing on shared file systems.

3. Handles the redirection of standard input, stan-
dard output, and standard error streams between
the tool stub on the local system and the tool ex-
ecutable on the remote system.

4. Provides the capability to execute binary files on
the remote system (UNIX or NT).

5. Provides the capability to launch the scripts on the

remote system (UNIX or NT).

6. Duplicates the shared file system credentials for
transparent user access from local to remote sys-
tem.

7. Impersonates the local system user on the remote
system and executes the tool with the same user
credentials.

Figure 10 details the architecture of the run-time cli-
ent-server capability.

Over the past year, the CAD organization at Intel has
successfully used this technology to validate more than
40 IA-NT ported CAD tools using the same test sys-
tem from UNIX by running more than 1,000+ test
flows in a seamless mixed NT-UNIX platform. These
test flows also used some of the UNIX-centric tools
that are not yet available on NT.

Figure 9: Flow execution using platform independent execution capability

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 9

Conclusion

This paper describes the innovative technical solutions
employed by Intel�s CAD organization to develop a
production capable NT*-UNIX* cross-platform CAD
design flow environment for development, mainte-
nance, and deployment activities.

This work is important for Intel to continue to maintain
a powerful, effective, and competitive design environ-
ment for the future generation of microprocessor de-
sign projects. The simple but powerful technique de-
scribed in this paper is easily proliferable to future
Intel microprocessor design project environments
as Intel moves from a UNIX to an IA-NT design flow
environment.

Acknowledgments

We thank DT and Computing Technology manage-
ment for providing the opportunity to work on this
exciting project. We are grateful to our department
manager Tae Paik for his vision, inspiration, patience,
and continuous encouragement during this project. We

wish to acknowledge Tae Paik for the brainstorming
session that helped us to come up with a run-time cli-
ent-server model and Daaman Hejmadi who worked
with Shesha Krishnapura (author) on the initial con-
cept of a compile-time client-server model. Thanks
to Sunil Bhasin and Gil Kleinfeld for applying the ITC
Library to new applications. Thanks to Athena-NT
Technical Working Group members for ratifying the
technical concepts and documents. Special thanks to
Tzvi Melamed, Greg Hannon, Chenwei Chiu, and Ming
Lin for their technical feedback and encouragement
during the development work. Thanks to Srini Rama
for implementing parts of the run-time client-server
utilities and conducting performance tests. Thanks to
Athena and Nike development engineers who are us-
ing the compile-time and run-time technologies in their
products.

References

[1]Alexander Wolfe, �Intel taps Windows NT in
design-software shift.� EETIMES, issue 948,
April 7, 1997, pages 1, 148.

Figure 10: Architecture overview of run-time client-server platform independent execution technology

Intel Technology Journal Q1�99

CAD Design Flows Development in a Cross-Platform Computing Environment 10

[2]Richard Goering, �Can NT win in IC design?�
EETIMES, issue 992, page 70.

Authors� Biographies

Shesha Krishnapura is a staff engineer and manager
for the Software Platform Engineering Group in CT/
DT. He received an M.S. degree in computer science
from Oregon State University in 1991 and a B.E. in
electronics engineering from the University
Vishveshvaraya College of Engineering, India in 1986.
He has worked on digital switching system software
and CAD platform tools. His interests are in client-
server modeling and platform migration. He joined
Intel in 1991. His e-mail is
shesha.krishnapura@intel.com.

Ty Tang is a senior software engineer in the Software
Platform Engineering Group in CT/DT. She received
her B.S. in computer science and computer engineer-
ing from the University of California at Los Angeles in
1990. Her expertise is in various levels of system pro-
gramming under UNIX* and NT* platforms, software
engineering and migration of CAD tools and system
software to various platforms. She joined Intel in 1994.
Her e-mail is ty.tang@intel.com.

Vipul Lal is a senior software engineer in the Software
Platform Engineering Group in CT/DT. He received a
B.S. in computer engineering from the University of
Pune, India in 1993. He has developed system and
application software for various flavors of UNIX* and
NT* operating systems. He joined Intel in 1996 and
is now working on cross-platform system and appli-
cation software development. His e-mail is
vipul.lal@intel.com

Abstract

This paper describes the formal specification and veri-
fication of floating-point arithmetic hardware at the level
of IEEE Standard 754. Floating-point correctness is
a crucial problem: the functionality of Intel�s floating-
point hardware is architecturally visible (it is docu-
mented in the programmer�s reference manual [1] as
well as an IEEE standard [2]) and, once discovered,
floating-point bugs are easily reproduced by the con-
sumer. We have formally specified and verified IEEE-
compliance of the Pentium Pro processor�s FADD,
FSUB, FMUL, FDIV, FSQRT, and FPREM opera-
tions, as well as the correctness of various miscella-
neous operations including conversion to and from in-
tegers. Compliance was verified against the gate-level
descriptions from which the actual silicon is derived
and on which all traditional pre-silicon dynamic vali-
dation is performed. Our results demonstrate that for-
mal functional verification of gate-level floating-point
designs against IEEE-level specifications is both fea-
sible and practical. As far as the authors are aware,
this is the first such demonstration.

Introduction
The main objectives of this paper are to describe how
we specify IEEE compliance of gate-level designs, and
how we employ theorem-proving and model-check-
ing tools to formally verify that the designs meet their
specifications. A further objective is to relate our ex-
perience verifying the gate-level description of the
Pentium® Pro processor�s floating-point execution
unit.

Work on this project began in July 1997, after the
discovery of a post-silicon erratum in the Pentium Pro
processor�s floating-point execution unit (FEU). The
discovery of this erratum was especially disturbing to
us because the Pentium Pro FEU had been the sub-
ject of a previous formal verification project [3]. The
work we describe in this paper extends and improves

upon the previous effort in the following respects. First,
our current specifications cover numeric correctness
at the level of the IEEE standard, while the specifica-
tions used in the previous verification project are at
the level of functional blocks within the FEU. Sec-
ond, our verification is much more comprehensive: in
the current work we verify correct datapath function-
ality for all floating-point operations implemented in
the FEU, including all precisions, rounding modes, and
flags. The focus in the earlier verification was core
datapath functionality only. Perhaps the most impor-
tant improvement over our previous work is method-
ological: whereas in the previous work we had no metric
for the completeness of a property set (leaving the
door open for errata to escape), we now employ for-
mal proof of compliance to an IEEE-level specifica-
tion as our completeness criterion.

Formal verification has also been applied to the AMD-
K7 ∗ floating-point multiplication, division and square
root algorithms [9]. We discuss this and other related
work after presenting our results.

Formally verifying IEEE compliance of floating-point
hardware presents three major challenges. The first
challenge is to capture the sense of the IEEE specifi-
cation in a straightforward and formal way, such that it
can be presented and debated in a verification review.
For example, the IEEE standard mandates that �when
rounding toward the result shall be the format�s
value � closest to and no greater than the infinitely
precise result� [2]. By introducing appropriate defini-
tions and abstractions we can state this requirement
formally in terms of the rounded result R, infinite pre-
cision result V, and the smallest representable incre-
ment ulp+:

∗ All other trademarks are the property of their respective
owners.

Formally Verifying IEEE Compliance of
Floating-Point Hardware

John O�Leary, Xudong Zhao, Rob Gerth, Carl-Johan H. Seger
Strategic CAD Labs, Intel Corporation, Hillsboro OR

Index words: floating-point, IEEE compliance, formal verification, model checking, theorem proving

Formerly Verifying IEEE Compliance of Floating-Point Hardware 1

Note that writing IEEE-level specifications requires
us to be able to specify arithmetic operations of un-
bounded precision, and that specification notations that
support only finite-precision �bit vector� arithmetic are
therefore inadequate.

The second challenge arises because the precision of
the arithmetic operations implemented by the hard-
ware is inherently bounded. A key aspect of our proof
is the verification that the finite-precision computations
performed by the hardware correctly implement the
unbounded precision operations mandated by the
specification. The gap between the finite-precision
gate-level description and the unbounded-precision
high-level specifications is spanned in the first instance
by our word-level model checker, using hybrid deci-
sion diagrams (HDDs) [4]. At higher levels of ab-
straction, we provide specialized decision procedures
that facilitate reasoning about unbounded precision
specifications.

The third challenge is the sheer size and complexity of
the floating-point algorithms and the hardware. We
have implemented a framework that combines ad-
vanced model-checking technology, user-guided theo-
rem-proving software, and decision procedures that
facilitate arithmetic reasoning. Our approach has been
to develop a lightweight theorem prover that is well
suited to hardware reasoning and composing/decom-
posing model checking results. The result is an envi-
ronment for developing concise and readable high-
level arithmetic proofs. Combining theorem proving
and model checking extends the capacity of our veri-
fication tools far beyond what is feasible by model
checking alone.

This paper is organized as follows. We present a brief
overview of our formal verification framework. We
then explain in detail the specification and verification
of the FMUL instruction to illustrate our methods. The
remaining instructions are covered in less detail.
FADD/FSUB and miscellaneous operations are veri-
fied against algorithmic models, which are verified in
turn against IEEE-level specifications using the FMUL
methodology. FSQRT, FDIV, and FPREM present
special challenges because they are iterative algorithms.
We explain how our basic methodology is extended
to deal with iterative algorithms. The paper closes
with a summary of results and a discussion of related
work.

Technology Overview
The work we discuss in this paper was made possible
by the formal verification system Forte, currently in
development at Intel. Forte is an evolution of the Voss
verification system, developed at the University of

British Columbia [5]. It seamlessly integrates several
types of model-checking engines with lightweight theo-
rem proving and extensive debugging capabilities, cre-
ating a productive high-capacity formal verification
environment.

There are two model-checking engines in Forte rel-
evant to this work: a checker based on symbolic tra-
jectory evaluation and a word-level model checker.
Symbolic trajectory evaluation (STE) is a formal veri-
fication method that can be viewed as something of a
hybrid between a symbolic model checker and a sym-
bolic simulator [6]. It allows the user to automatically
check the validity of a formula in a simple temporal
logic but it performs the checking by using a symbolic
simulation-based approach and thus is significantly
more efficient than more traditional symbolic model-
checking approaches. Symbolic trajectory evaluation
is particularly well suited to handle datapath proper-
ties, and it is used in this work to verify gate-level models
against more abstract reference models. However,
since symbolic trajectory evaluation is based on bi-
nary decision diagrams [7], there are circuit structures
that cannot be handled. In particular, multipliers are
beyond the capability of STE alone.

The word-level model checker is a linear time logic
model checker tailored specifically to verifying arith-
metic circuits. By using hybrid decision diagrams, the
model checker can handle circuits that BDD-based
model checkers cannot handle [4]. In particular, it
can handle large multipliers efficiently, satisfying one
of the requirements for verifying any modern floating-
point unit. Although the model-checking algorithms
used by the word-level model checker differ from those
used by STE, the word-level model checker uses the
STE engine to extract a transition relation from the
circuit, ensuring that the two model checkers use a
consistent view of the circuit�s behavior.

Today, neither model checker is capable of checking
the high-level IEEE specifications against the gate-level
design. As a result, the verification must be broken up
into smaller pieces, either following the structure of
the circuit or partitioning the input data space. In or-
der to ensure that no mistakes are made in this parti-
tioning process and that no verification conditions are
forgotten, a mechanically checked proof is needed.
In Forte, a lightweight theorem proving system is used
for this task. This theorem prover is seamlessly and
tightly integrated with the model checkers. As a re-
sult, no translation or re-formulation of the verification
results is needed before the theorem proving can be
performed. In addition, some special purpose deci-
sion procedures are also integrated, making reasoning
about arithmetic results significantly easier and more
efficient.

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 2

Although the theorem prover in the Forte environment
can be used to reason about almost any type of ob-
ject, its design is tailored specifically to combining
model-checking results and reasoning about integer
expressions. As a result, our high-level specifications
are given in terms of integers, rather than rational num-
bers. As we show in a later section, this is more of an
aesthetic than a real limitation.

Figure 1: Mantissa representation

Finally, in order to make the verification process prac-
tical and efficient, the Forte verification system also
includes significant support for efficient debugging.
Support ranges from visualization support to provi-
sion of extensive counter example generation integrated
in all decision procedures.

Specifying IEEE Compliance of Hardware

A floating-point number is made up of a sign ,
a mantissa , and an exponent . Each float-
ing-point number represents the rational number

where p represents the number of bits in the fractional
portion of the mantissa, and is a constant chosen to
make e�s range non-negative. Figure 1 depicts our
representation of the mantissa. For a given R, we de-
fine and as the distance from R to the next
and previous representable values, and ulp as the dis-
tance from R to the next largest representable value in
magnitude.

For most values of R, where p-n is
the number of significant bits in the fractional part of
the mantissa (p - n = 23 for single precision, 52 for

double precision, and 64 for extended precision).
When R�s mantissa is 1.0, the adjacent representable
values on either side of R have different exponents. In
such cases when R is
negative; and when R is
positive. The bottom n bits in the mantissa are all 0.

The IEEE standard specifies that the result of a float-
ing-point operation is computed as if the operation
has been performed to unbounded precision and then
rounded to fit into the destination format. The result
of rounding a floating-point number is one of the two
representable values closest to the exact value; which
one of the closest values is determined based on the
rounding mode. The IEEE standard specifies four
rounding modes: toward zero, toward negative infin-
ity, toward positive infinity, and to nearest. Since the
IEEE standard is written in English, the formalization
we present in this paper is necessarily our interpreta-
tion of the standard�s intent.

We capture the required relationship between a result
V calculated to unbounded precision and a result R
rounded toward negative infinity

The relation between a result V calculated to un-
bounded precision and a rounded result R is specified
as follows for each of the three remaining rounding
modes:

Even(R) means that the least significant bit in R�s man-
tissa is 0, and it depends on the destination precision
of the floating-point operation.

Specifying FMUL
To illustrate our methods, we will derive the specifica-
tion for floating-point multiplication.

With the definitions of the previous section in hand,
capturing the IEEE-level specification is easy. The
product of two floating-point quantities, to unbounded
precision, is

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 3

Let us call the result of the computation

The units in the last place are as defined in the previ-
ous section, and the IEEE-level specification is

where .

Since our verification environment only deals with
specifications written in terms of integer operations,
we now need to transform the IEEE-level specifica-
tion developed above into an equivalent specification
involving only operations on integers. Expanding the
definitions of V, R, and in the IEEE specification
for multiplication rounding to gives

Now, by multiplying both sides of each inequality by
and rearranging, we obtain an equivalent

specification in terms of integer operations only:

where .

For the other rounding modes, we follow a similar pro-
cedure and obtain the following specifications:

These specifications are all in terms of the integer op-
erations addition, subtraction, multiplication, and modu-
lus and are therefore amenable to word-level model
checking.

Verifying FMUL
The IEEE-level specifications are much too large and
abstract to be directly verified by model checking, so
the first step in our verification is to decompose the
specification into smaller, more concrete pieces. The
decomposition is done manually using engineering
judgement about what is feasible to verify with the
model checker. The second step is to verify the lower-
level specifications by model checking. Typically, sev-
eral iterations through the decomposition and model-
checking steps are required. The third step is to for-
mally compose the lower-level specifications using the
theorem prover. The composition should yield back
the desired high-level specification, thus verifying the
correctness of the decomposition step.

Figure 2: Floating point multiplier

Figure 2 shows a block diagram of the basic floating-
point multiplication algorithm. In the MPY stage, in-
puts are multiplied to com-

pute an approximate result without regard
to rounding. Algorithmically, this means that their man-
tissas are multiplied, their exponents are added, and
their sign bits are XORed. The output of the multipli-
cation stage is a truncated form of the unbounded-
precision result. A sticky bit is also generated, which
is set if any significance was lost in the truncation. The
intermediate result and sticky bit are sent to the rounder,
which rounds according to the rounding mode and des-
tination format.

The verification task was broken into multiplication
and rounding stages, following the natural structure of
the hardware. The multiplication stage was further
decomposed into operations on the mantissa, expo-
nent, and sign. Properties at this level were verified
by model checking, and the results combined to yield
the required high-level result.

First consider the multiplication stage. Using word-

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 4

level model checking, we verify the following proper-
ties of the mantissa, exponent, and sign computations:

We also verify that the sticky bit correctly captures
the loss of precision in multiplication.

We combine the above results using the theorem prover
to obtain

This completes verification of the multiplication part of
FMUL.

Verification of the rounding property, like the property
of multiplication, required proving some lower-level
properties using word-level model checking and ma-
nipulating them using the theorem prover. For the
rounding calculation, we verified the high-level prop-
erty

To complete the verification, we compose the prop-
erties of the multiplier and rounder to yield the required
high-level property. This composition is performed in
the theorem prover, using the logical rule that states �if
we have proven both A and , then we can
conclude B.� In this case A is the property proved of
the multiplier (which is also the antecedent of the
rounder property) and is the de-
sired property of the multiplier combined with the
rounder. It is clear that B follows immediately.

Verifying FADD/FSUB and Miscellaneous
Operations
The verification strategy for FMUL was a structural
decomposition driven by the structure of the gate-
level design and by capacity limitations of the model
checker. For a large class of operations, which in-
cludes floating-point add and subtract, normalize-and-
round, conversion to and from integers, and various
shift instructions, model checking capacity suffices to
perform black box verification. The strategy deployed
here is to build an abstract reference model against
which the gate-level design is verified. In a separate
step, we can verify the reference model against IEEE-
level properties1. As an example, Figure 3 shows the
reference model for an operation used internally by
the Pentium® Pro processor. Note that this is an al-
gorithmic description that takes two Boolean vectors
(S1 and S2) and returns a Boolean vector with an
appropriately shifted mantissa.

Figure 3: Reference model for FPSHR

The IEEE-level specification of FADD/FSUB is simi-
lar to that for FMUL. For FADD/FSUB, we used as
a reference model a textbook algorithm for addition/
subtraction with rounding [8]. The gate-level design
was verified against the reference model using sym-
bolic trajectory evaluation. The verification of the gate-
level design against the reference model is black box
in the sense that no decomposition is needed of the
reference model or the design. The reference model
(but not the gate-level model) performs addition in five
stages: mantissa alignment (so that the exponents are
equal), addition/subtraction of the mantissas, normal-
ization, rounding, and renormalization (as rounding may
produce an overflow). The proof that the reference
model complies to IEEE specifications naturally de-
composes into the same stages. For each stage, the
appropriate properties were proved (using word-level
model checking), and were finally combined using the

1 Many of the miscellaneous operations are used internally
by the processor and lack meaningful IEEE-level specifica-
tions. For these operations the second step is unnecessary.

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 5

Forte theorem prover.

While the verification of the reference model against
the high-level specification required structural decom-
position, the decomposition was determined by what
was most convenient for theorem proving and not by
constraints imposed by the gate-level design or the
model checker. The advantage of this approach is
that the most time-consuming and complex part of the
verification, the use of theorem proving in verifying the
high-level specification, is completely isolated from the
relatively fast-changing gate-level design. As a case in
point, we ported the FADD/FSUB reference models
developed for the Pentium Pro processor to two other
processors and verified them with only very minor
changes that did not impact the high-level proofs. The
high-level proofs therefore remain valid for the other
processors.

Verifying FSQRT and FDIV
Division, square root, and remainder present special
challenges. They are both more difficult to specify
and more difficult to verify than FMUL and FADD/
FSUB.

The difficulty in specification is minor, and it arises
because our verification framework requires that speci-
fications be stated in terms of integer operations.
However, FDIV naturally yields a rational result, and
FSQRT may well yield an irrational result. Following
the method used for FMUL, we define

Simple algebra gives

 . Therefore
the above definition can be rewritten as follows (the
utility of this step will be explained in a moment):

We can then derive the following specification, in terms
of integer operations, for division rounding to negative
infinity:

Our derivation involved multiplying both sides of each
inequality by . If we had multiplied by
we would have had to break our final specification
into cases according to the sign of . Rearranging

using the fact allows our final speci-
fication to remain simple. Specifications for division in
other rounding modes are also easy to derive.

For FSQRT, we define

We derive the specifications for square root by squar-
ing both sides of each inequality and rearranging them.
For example, the specification for square root round-
ing to negative infinity is

The FPREM (floating-point remainder) instruction is
a variant of FDIV and will not be discussed further.

FDIV, FSQRT and FPREM are realized in the
Pentium® Pro processor by iterative algorithms, and
the complexity of the algorithms makes them difficult
to verify. Verification of these operations required
verification of a loop invariant plus some special prop-
erties of the initial and final iterations. These results
were then combined with properties of the rounding
algorithm.

First, we need to verify the correctness of the control
flow, shown in Figure 4. Suppose the computation
takes n iterations. We must prove that the circuit is in
its initial state in cycle 0, in its loop state at cycles 1
through n, in the final state of the FDIV or FSQRT
computation in cycle n+1, and rounding the result in
cycle n+2. These properties are verified by induction
over time. The induction base says that at cycle 0, the
circuit is in the initial state, the loop counter is n, and

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 6

Figure 4: FDIV/FSQRT/FPREM algorithm flow

the next state is the loop state. The induction step
says if the circuit is in the loop state and the loop counter
is greater than 0, then the next state is the loop state
and the counter decreases by 1. Furthermore, if the
circuit is in the loop state and the loop counter is 0,
then the next state is the final state, and the result will
be rounded after the final state. All of the induction
base and induction steps are proved by model check-
ing on the circuit. The theorem prover is used to com-
pose these results to verify the correctness of the con-
trol flow.

The second step is to prove the data invariants. There
are two data invariants for the iterative operations. The
first invariant is the range invariant, which relates the
values of the partial remainder and divisor (or radi-
cand) in an iteration. The second invariant is the value
invariant, which relates the values of the partial re-
mainder, divisor, dividend, and quotient (or partial re-
mainder, radicand, and root) in adjacent iterations. The
range and value invariants are proved using induction
over time. The base cases and the induction steps are
proved by model checking. The theorem prover is
used to combine base and induction steps to com-
plete the invariant proofs.

After the second step is done, the results are com-
bined with properties of the rounding stage to reach
the required high-level specification. This verification
step is very similar to the final verification step for
FMUL.

Results on the Pentium® Pro Processor
The preceding sections have given an overview of our
verification methodology and its application to various
classes of operations. In this section we describe the
results of verifying the Pentium Pro processor�s float-
ing-point execution unit (FEU).

This work has its roots in earlier Intel work on arith-
metic circuit verification, which focused on specifying
and verifying core datapath functionality [3]. Our goals
for the current work were much broader in scope.
Our aims for the specification and verification effort
were as follows:

1. Construct IEEE-level functional specifications for
all floating-point operations performed by the FEU.

2. Verify correct datapath functionality for all opera-

tions specified.

3. Verify that flags are correctly set and faults are
correctly signaled, as required by the
microarchitecture specification.

4. Cover all variants of each operation, including
those used only by microcode.

5. Cover all precisions and rounding modes.

We accomplished these aims during a five-quarter
project involving two engineers full-time, with one ad-
ditional full-time engineer involved in the fifth quarter.
The first two quarters were devoted mostly to tool
and methodology development, driven by example
operations drawn from the Pentium Pro processor. In
this initial period, our word-level model checker, theo-
rem-proving software, and decision procedures were
refined, and inference rules were developed to reason
about properties proved by model checking. In the
final three quarters, our resources were applied to veri-
fication in earnest, with work on tools and infrastruc-
ture only as needed. In all, we undertook six verifica-
tion sub-tasks: FADD/FSUB (we consider this one
operation), FMUL, FDIV, FSQRT, FPREM, and
numerous miscellaneous operations (each is relatively
simple, but there are many of them). Each sub-task
took approximately one engineer-quarter2, including
specification development, understanding the FEU
micro architecture and gate-level design, model check-
ing, and theorem proving.

To limit the scope of the project we chose to focus on
the numeric correctness of the FEU. Some important
correctness properties are not covered by our verifi-
cation, including freedom from interference or con-
tention between multiple active operations, the cor-
rect response of the FEU to external control events
(stalls, for example), and the correctness of the mi-
crocode that uses the FEU operations.

A further goal of our Pentium Pro processor verifica-
tion effort was that our results and methodologies
should be reusable within and between major proces-
sor generations. To demonstrate the potential for such
reusability, we repeated some of our verifications on
other Intel processors. We repeated the model
checking of FADD/FSUB and miscellaneous opera-
tions on a proliferation of the Pentium Pro processor,
and we verified that the proliferation�s behavior was
identical with respect to our specifications (despite
some redesign that had occurred). We observed vir-
tually complete reuse of our properties and verifica-

1This figure includes time for staff meetings and other rou-
tine activities.

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 7

tion scripts. We repeated verification of FADD/FSUB
on a new processor generation that has a completely
different microarchitecture and, again, obtained ex-
tremely high re-use of properties and scripts. The
highly reusable nature of the FADD/FSUB verifica-
tion is a consequence of our capability to perform black
box model checking on these operations. We also
ported our FMUL verification to the new processor.
Since FMUL was verified using a structural decom-
position approach, microarchitectural changes between
processor generations dictated that many of the low-
level properties used in the FMUL verification had to
be modified. Our tools and methodologies proved
fully reusable, however. One very high-quality erra-
tum was discovered and corrected in the pre-silicon
design phase.

Discussion
The success of this project has three principal lessons.
The first is that we can formally verify gate-level de-
scriptions of floating-point hardware against IEEE-level
specifications using the Forte formal verification frame-
work. Moreover, it is feasible and practical to do so
in the timeframe of a major processor design project.
The major impact of our work is on the quality of the
product: our method will eliminate a class of post-sili-
con escapes due to incorrect floating-point function-
ality. A second impact is on validation efficiency: scarce
simulation cycles can be redirected to cover function-
ality that is not covered by formal verification.

The second lesson is that verifying floating-point hard-
ware against IEEE-level specifications requires sig-
nificant effort and investment. Our verification effort
on the Pentium Pro processor involved two formal
verification experts full-time over five quarters, with a
third full-time expert added in the final quarter. It is
true that part of this time was spent on tool and meth-
odology development, but it is also true that we were
able to leverage prior knowledge about the Pentium
Pro microarchitecture. We expect that an effort on a
future processor will require a similar investment. On
the other hand, the payback is potentially very high.
Each floating-point erratum has the potential to be a
highly visible flaw in the processor, as was the case
with the Pentium® processor�s FDIV flaw.

A third lesson is that devising and executing floating-
point formal verification strategies requires certain spe-
cialized expertise. Identifying low-level properties or
writing reference models requires solid knowledge of
floating-point microarchitecture and algorithms. Re-

lating the low-level properties to IEEE-level specifi-
cations requires skill in constructing formal proofs, and
mechanizing the verification to the extent described in
this paper requires skill and experience in using theo-
rem-proving software. The difficulties encountered in
model checking range from moderate (FADD/FSUB
and miscellaneous operations) to very challenging
(FMUL). While the required expertise can be readily
taught and learned, it is not yet a part of the main-
stream curriculum in computer science or electrical
engineering.

Most formal verification methodologies in use within
industry today focus on using model checkers to verify
low-level properties of hardware. A notable excep-
tion in the field of floating-point verification is the work
of Russinoff on verifying the AMD-K7 ∗ algorithms
using the ACL2 theorem prover [9]. Russinoff for-
mally verified the behavior of abstract models of the
AMD-K7 floating-point algorithms. Russinoff�s ab-
stract models were �derived from an executable model
that was written in C and used for preliminary testing�
and assumed integer addition, multiplication, and
bitwise logical operations as primitives [9]. Russinoff
does not specify how he validates the correctness of
the abstract models with respect to the gate-level de-
sign. In contrast, we verified the IEEE-compliance of
the gate-level design from which the silicon is derived
and which is used for all pre-silicon dynamic valida-
tion. Another important difference between Russinoff�s
work and ours is that the AMD-K7 verification was
carried out in a general-purpose theorem prover
whereas our verification methodology combines model
checking with a theorem prover that is specialized to
manipulate model checking results.

A precursor to the current work is that of Aagaard
and Seger, who formally verified the IEEE compli-
ance of the gate-level implementation of a floating-
point multiplier using a combination of theorem prov-
ing and model checking [10]. The verification we de-
scribe in the current paper covers many more opera-
tions, and we have demonstrated that our work scales
to industrial-sized floating-point hardware.

There has been substantial work on formal verifica-
tion of floating-point algorithms implemented in either
microcode or software. The microcode that imple-
ments the floating-point divide instruction of the AMD-
K5* processor was verified by Moore, Lynch, and
Kaufmann [11]. Russinoff verified the microcode for
the AMD-K5 floating-point square root instruction
[12]. Harrison describes the specification and verifi-
cation of the exponential function [13]. Cornea-
Hasegan describes the verification of programs that
compute IEEE-compliant division, remainder, and

∗ All other trademarks are the property of their respective
owners.

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 8

square root operations [14]. All these verifications
assume, as a starting point, that the underlying hard-
ware correctly implements arithmetic building blocks
such as addition, subtraction, and multiplication. Our
work is complementary in that it focuses on verifying
the correctness of the underlying hardware. The al-
gorithm verifications have often relied on relatively deep
mathematics, and therefore are most appropriately
formalized in a general-purpose theorem-proving en-
vironment.

Conclusion
We have developed tools and methods for formal veri-
fication of floating-point functionality and demonstrated
them on the Pentium Pro processor and other pro-
cessors. No other formal verification method has been
shown to be able to fully span the semantic gap be-
tween gate-level descriptions and high-level IEEE
specifications in this domain.

Acknowledgments
We are grateful to John Harrison for pointing out an
error in an earlier version of our specifications. We
thank Yirng-An Chen for helping in the development
of the word-level model checker and some early veri-
fication work, and Mark Aagaard and Donald Syme
for helping in development of the theorem prover. Tom
Melham and Robert Jones made key contributions to
the methodology we used to verify FADD/FSUB and
miscellaneous operations. We are grateful to Timothy
Kam, Yatin Hoskote, and Pei-Hsin Ho for their con-
tributions to our earlier verification effort.

References
[1] Intel Architecture Software Developer�s

Manual. Volume 2: Instruction Set Reference,
Intel Corporation, 1997, Order Number 243191.

[2] �IEEE Standard for Binary Floating-Point Arith-
metic, ANSI/IEEE Std 754-1985.

[3] Y-A. Chen, E. Clarke, P-H. Ho, Y. Hoskote, T.
Kam, M. Khaira, J. O�Leary, and X. Zhao, �Veri-
fication of all circuits in a floating-point unit using
word-level model checking,� in M. Srivas and A.
Camilleri, editors, Formal Methods in Computer-
Aided Design, Volume 1166 of Lecture Notes in
Computer Science, Springer-Verlag, 1996.

[4] E.M. Clarke, M. Khaira, and X. Zhao, �Word-
level symbolic model checking: a new approach
for verifying arithmetic circuits,� in Proceedings
of the 33rd ACM/IEEE Design Automation
Conference, IEEE Computer Society Press, June
1996.

[5] C. Seger, Voss�A Formal Hardware Verifica-
tion System: User�s Guide, Technical Report 93-
45, Department of Computer Science, University
of British Columbia, 1993.

[6] C. Seger and R. Bryant, �Formal verification by
symbolic evaluation of partially-ordered trajecto-
ries,� Formal Methods in System Design, 6(2),
April 1994, pp. 147-189.

[7] R. Bryant, �Graph-based algorithms for Boolean
function manipulation,� IEEE Transactions on
Computers, 35(8), August 1986, pp. 677-691.

[8] J. Feldman and C. Retter, Computer Architec-
ture: A Designer�s Text Based on a Generic
RISC, McGraw-Hill, 1994.

[9] D. Russinoff, �A mechanically checked proof of
IEEE compliance of the floating-point multiplica-
tion, division, and square root algorithms of the
AMD-K7* processor,� London Mathematical
Society Journal of Computation and Math-
ematics, 1, December 1998, pp. 148-200.

[10] M. Aagaard and C. Seger, �The formal verifi-
cation of a pipelined double-precision IEEE float-
ing-point multiplier,� in International Conference
on Computer-Aided Design, IEEE Computer
Society Press, November 1995.

[11] J. Moore, T. Lynch, and M. Kaufmann, �A
mechanically checked proof of the AMD5

K
86*

floating-point division program,� IEEE Transac-
tions on Computers, 47(9), September 1998,
pp. 913-926.

[12] D. Russinoff, �A mechanically checked proof
of correctness of the AMD-K5* floating point
square root microcode,� Formal Methods in
System Design, 14(1), 1999, special issue on
arithmetic circuits.

[13] J. Harrison, �Floating point verification in HOL
Light: the exponential function,� Technical Report
428, University of Cambridge Computer Labo-
ratory, June 1997.

[14] M. Cornea-Hasegan, �Proving the IEEE
correctness of iterative floating-point square
root, divide, and remainder algorithms,� Intel
Technology Journal, Q2 1998 at http://
developer.intel.com/technology/itj/q21-998.htm.

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 9

Authors� Biographies
John O�Leary is a senior engineer with Strategic CAD
Labs, Intel Corporation, Hillsboro, OR. From 1987
to 1990, he was a member of the scientific staff at
Bell-Northern Research, Ottawa, Canada. He joined
Intel in 1995 after earning a Ph.D. in electrical engi-
neering from Cornell University. His interests are for-
mal hardware specification and verification. His e-
mail is joleary@ichips.intel.com.

Xudong Zhao is a staff engineer with Strategic CAD
Labs, Intel Corporation, Hillsboro, OR. He recieved
his Ph.D. degree in computer science from Carnegie
Mellon University in 1996. His research topics in-
clude formal verification for hardware, for arithmetic
circuits in particular. His e-mail is
xzhao@ichips.intel.com.

Rob Gerth is a staff engineer in the Strategic CAD
Laboratories, Intel Corporation, Hillsboro, OR. He
received his Ph.D in computer science from Utrecht
University, The Netherlands in 1989 and was a lec-
turer at Eindhoven University of Technology before
he joined Intel in 1997. His current interests include
multi-processor verification. His e-mail is
robgerth@ichips.intel.com.

Carl-Johan H. Seger received his Ph.D. degree in
computer science from the University of Waterloo,
Canada, in 1988. After two years as Research Asso-
ciate at Carnegie Mellon University he became an
Assistant Professor in the Department of Computer
Science at the University of British Columbia, and in
1995 he became Associate Professor. He joined
Intel�s Strategic CAD Labs in 1995. His research
interests are formal hardware verification and asyn-
chronous circuits. He is the author of the Voss hard-
ware verification system and is co-author of Asyn-
chronous Circuits (Springer-Verlag, 1995). His e-
mail is cseger@ichips.intel.com.

Intel Technology Journal Q1�99

Formerly Verifying IEEE Compliance of Floating-Point Hardware 10

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 1

Defect-Based Test: A Key Enabler for Successful Migration
to Structural Test

Sanjay Sengupta, MPG Test Technology, Intel Corp.
Sandip Kundu, MPG Test Technology, Intel Corp.

Sreejit Chakravarty, MPG Test Technology, Intel Corp.
Praveen Parvathala, MPG Test Technology, Intel Corp.
Rajesh Galivanche, MPG Test Technology, Intel Corp.
George Kosonocky, MPG Test Technology, Intel Corp.

Mike Rodgers, MPG Test Technology, Intel Corp.
TM Mak, MPG Test Technology, Intel Corp.

Index words: structural test, functional test, ATE, DPM, logic test, I/O test, cache test, AC loopback test, inductive fault
analysis, fault models, stuck-at fault, bridge fault, delay fault, open fault, defect-based test, ATPG, fault simulation, fault
modeling, DPM, test quality, fault grading, design-for-test

Abstract
Intel�s traditional microprocessor test methodology,
based on manually generated functional tests that are
applied at speed using functional testers, is facing se-
rious challenges due to the rising cost of manual test
generation and the increasing cost of high-speed
testers. If current trends continue, the cost of testing
a device could exceed the cost of manufacturing it.
We therefore need to rely more on automatic test-
pattern generation (ATPG) and low-cost structural
testers.

The move to structural testers, the new failure mecha-
nisms of deep sub-micron process technologies, the
raw speed of devices and circuits, and the compressed
time to quality requirements of products with shorter
lifecycles and steeper production ramps are adding to
the challenges of meeting our yield and DPM goals.
To meet these challenges, we propose augmenting the
structural testing paradigm with defect-based test.

This paper discusses the challenges that are forcing us
to change our testing paradigm, the challenges in test-
ing the I/O, cache and logic portions of today�s mi-
croprocessors, due to the paradigm shift, and the prob-
lems to be solved to automate the entire process to
the extent possible.

Introduction
Traditionally, Intel has relied on at-speed functional
testing for microprocessors as this kind of test has
historically provided several advantages to screen de-
fects in a cost-effective manner. Unlike other test

methods, functional testing does not require the be-
havior of the device under test (DUT) to be changed
during the test mode. Thus, functional testing allows
us to test a very large number of �actual functional
paths� at speed using millions of vectors in a few milli-
seconds; to thoroughly test all device I/Os with �tester-
per-pin� ATE technology; and to test embedded caches
in a proper functional mode. In addition, the testing is
done in a noise environment comparable to system
operation. However, functional testing is facing an in-
creasing number of obstacles, forcing Intel to look at
alternative approaches.

We begin this paper by describing the problem of con-
tinuing with functional testing of microprocessors. We
then define an alternative paradigm, which we call
structural test. Finally, the challenges that we face and
the problems that need to be solved to test the logic, I/
O, and cache subsystems of the microprocessor to
make the alternative test method work are discussed.

Structural testing has been in use in the industry for
quite some time. In order to meet Intel�s aggressive
yield and DPM goals, we propose enhancing the struc-
tural test flow, by using defect-based test (DBT). DBT
is based on generating manufacturing tests that target
actual physical defects via realistic fault models. The
primary motivation in augmenting structural testing with
DBT is to make up for some of the potential quality
losses in migration to structural test methods as well as
to meet the challenges of sub-micron defect behavior
on the latest high-performance microprocessor circuits.
Although the impact of DBT on defects per million
products shipped is not well characterized, prelimi-

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 2

nary studies of DBT [1] show that it improves quality.

DBT requires a whole suite of CAD tools for its suc-
cessful application. In section 5, we discuss tool re-
quirements for successful DBT for the latest high-per-
formance microprocessors.

The Microprocessor Test Problem
Stated simply, the increasing cost of testing micropro-
cessors to deliver acceptable product quality on ever
faster and more complex designs is the main problem
we face. The cost challenges range from the non-
recurring design and product engineering investment
to generate good quality tests to the capital investment
for manufacturing equipment for test.

Automatic Test Equipment (ATE) Cost
Following Moore�s Law for the past two decades,
the silicon die cost of integrated circuits has decreased
as the number of transistors per die has continued to
increase. In contrast, during the same period, the cost
of testing integrated circuits in high-volume manufac-
turing has been steadily increasing. Silicon Industry
Association (SIA) forecasts, depicted in Figure 1, pre-
dict that the cost of testing transistors will actually sur-
pass the cost of fabricating them within the next two
decades [2].

Figure 1: Fabrication and test cost trends

Lagging ATE Technology
Aggressive performance targets of Intel�s chip set and
microprocessor products also require increasingly
higher bus bandwidth. Due to problems such as power
supply regulation, temperature variation, and electri-
cal parasitics, tester timing inaccuracies continue to
rise as a function of the shrinking clock periods of high-
performance designs. The graph in Figure 2 shows

trends for device period, overall tester timing accu-
racy (OTA), and the resulting percentage yield loss.
It was derived from information in the SIA roadmap.

Figure 2: Tester accuracy and projected yield loss
trends

In addition to the increase in device frequency and the
number of I/O pins, advanced signaling techniques are
also used to improve I/O performance. One such sig-
naling innovation is the use of the source-synchronous
bus, which has been in use since the Pentium® Pro
line of microprocessors. Data on such a bus is sent
along with a clock (strobe) generated from the driving
device. This complicates testing since the ATE needs
added capability to synchronize with the bus clock
(strobe).

Test Generation Effort
Manual test writing, which has been in use at Intel,
requires a good understanding of the structure of the
DUT (typically a design block owned by a designer),
as well as global knowledge of the micro-architec-
ture. The latter is required since tests have to be fed
to the DUT and the response read from the DUT.
With increasing architectural complexities such as deep
pipelining and speculative execution, increasing circuit
design complexity and new failure modes, the cost of
test writing is expected to become unacceptable if we
are to meet time-to-volume targets. This is supported
by the data presented in Figure 3 where manual test
generation effort is compared with the effort required
if ATPG, augmented with some manual test genera-
tion, were used. Note that manual test writing effort
required for functional testing has been increasing ex-
ponentially over the last several generations of micro-
processors at Intel. Compared to that, the projection
for ATPG is very small. Note that the data for
Willamette/Merced� and beyond are projections.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 3

Figure 3: Test generation effort trend

Deep Sub-Micron Trends
As the feature length of transistors scales down, power
supply voltage is scaled down with it, thereby reduc-
ing noise tolerance. Metal pitch is also scaled in tan-
dem to realize the density gain. If interconnects were
scaled proportionately in both pitch and height, line
resistivity would rise quadratically, thereby degrading
performance. To hold this trend down, metal height is
scaled down by a smaller factor than the pitch, which
results in increased cross capacitance.

The increase in the number of metal layers introduces
more masking steps and can skew the random defect
distribution towards interconnect failure modes such
as bridges and open vias. Susceptibility to process
variation is heightened due to the higher cross capaci-
tance and reduced noise tolerance.

Like other CAD tools, performance validation tools
are struggling to keep up with increasing design sizes
and circuit design complexity. The most common so-
lution is to build simplifying assumptions into the tools,
and to offset this by the use of conservative nominal
delays. Faced with increasing performance goals,
designers build devices with negative timing margins.
Such aggressive designs styles, coupled with increas-
ing layout density, mean that even minor defects or
process variations, which would otherwise be benign,
could result in failures. Deliberate design marginality
thus translates into test problems. Writing functional
tests for subtle failure modes, which are made mani-
fest under a very specific set of conditions, is becom-
ing increasingly difficult.

Test Paradigm Shift and Challenges of the New
Test Paradigm
Test paradigms are defined by (a) the kind of test; (b)
the kind of tester that stores and delivers the test; and
(c) the test delivery mechanisms.

Tests can be either structural or functional. Struc-
tural tests target manufacturing defects and attempt to
ensure the manufacturing correctness of basic devices
such as wires, transistors, etc. Functional tests, on the
other hand, target device functionality and attempt to
ensure that the device is functioning correctly. Func-
tional tests are written primarily for architectural veri-
fication and silicon debug. They can be used for manu-
facturing testing also, as is done at Intel. Structural
tests, on the other hand, are used primarily for manu-
facturing testing.

Testers come in two varieties: functional and struc-
tural. Functional testers can drive a large number of
I/O pins at high clock rates with great timing accuracy.
On the other hand, structural testers are limited in the
number of I/O pins they can drive, as well as the
speed and accuracy with which they can deliver data
to the I/O pins. The cost of structural testers is con-
siderably lower than the cost of functional testers.

Tests can be delivered in one of two ways. The
device�s normal functional channels are used and the
device runs at operating speed. Alternatively, special
design-for-test (DFT) channels can be designed, and
tests are applied through these channels at less than
operational speed. The scan structure and ArrayDAT
exemplify this.

The test paradigm in use at Intel so far uses functional
testers and functional tests. These tests are delivered
using the functional channels. Functional tests are writ-
ten manually. Using functional testers requires huge
capital investment over short periods of time since they
become obsolete very quickly. Hence, Intel is now
relying more on reusable low-cost testers.

As the data showed, manual test writing for future mi-
croprocessors is not feasible. Therefore, use of ATPG
tools becomes essential to meet cost and time-to-qual-
ity requirements. Thus, the paradigm that has evolved
is to use low cost structural testers and use ATPG to
generate the required tests. The tests being generated
are structural tests. The structural tests we generate
differ from the classical structural tests in that we tar-
get defects via some novel fault models. We elabo-
rate on this later in the paper. We next discuss the
challenges that this paradigm shift brings with it.

Test Generation
The loss in accessibility to the I/O pins of the device
has a major impact on the ability of engineers to write
functional tests for the chip. It may be possible to

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 4

load functional tests through direct access to an on-
chip cache, and run them from there, but it is difficult
to generate tests that operate under this mode. As a
result, most of the fault-grading tests that are applied
through DFT methods have to be generated using
ATPG tools.

ATPG for large high-performance designs poses unique
problems. Today�s microprocessors have multiple
clock domains, operating at different speeds. Clock
gating for low-power operation is pervasive. Typical
designs have many complex embedded arrays that
need to be modeled for the ATPG tool. Industry stan-
dard DFT techniques, such as full scan, are often too
expensive in either die area, or performance or both
[7].

Defect mechanisms in deep sub-micron designs are
often manifested as speed failures under very specific
conditions. Most commercial ATPG tools, which are
based on the stuck-at and transition fault models, are
not equipped to handle these complex failure modes.

Design for Test
Although ATPG technology has progressed during this
time, the success of these tools is predicated on pro-
viding a high degree of access, controllability, and
observability to the internals of the design by using
DFT techniques.

Scan design, the best-known structured DFT tech-
nique, comes at the cost of both performance and area,
although some trade-off is possible. In order to meet
tight timing requirements, high-performance designs
tend to have very few gates between storage elements,
which results in a high latch-to-logic ratio. Therefore,
implementing scan DFT generally translates into sac-
rificing considerable silicon real estate.

Another DFT technique that is gaining acceptance in
the industry is Built-In Self-Test (BIST), which incor-
porates mechanisms to generate stimuli and compress
responses for later off-chip comparisons into the de-
sign. BIST allows a large number of patterns to be
applied at speed in a short time, with very little tester
support. However, most logic BIST techniques that
enjoy commercial success today require full scan, or
close to it. In addition, they need design changes to
enhance random-pattern testability, to allow at-speed
test application, and to prevent the system from get-
ting into an unknown state that can corrupt the com-
pressed response.

Such intrusive DFT techniques cannot be applied
across the board to high-performance devices, so logic
BIST for microprocessors has only limited applicabil-
ity today. High-volume, high-performance micropro-
cessors have to choose between the high cost of scan
DFT or resort to more custom access methods of get-

ting stimuli to, and observing responses at, the bound-
aries of internal components.

Test Application Methodology
Industry data shows that testing a device using func-
tional tests rather than other test patterns results in
fewer escapes [4]. A possible explanation is that when
the device is exercised in functional mode, defects that
are not modeled, but affect device functionality, are
screened out.

ATPG patterns differ fundamentally from functional test
patterns: they explicitly target faults rather than check-
ing for them by exercising the functionality of the de-
vice, and they are typically very efficient, detecting each
fault fewer times in fewer ways. Also, since they are
based on using DFT structures to apply tests, they are
applied at a lower speed. Consequently, there is a
risk of losing �collateral� coverage of defects that do
not behave like the modeled faults.

Structural testers have a small set of pins that operate
at a lower frequency than the device and contact only
a subset of its I/O pins. The device needs to be
equipped with special DFT access ports to load and
unload the vectors from the tester. The boundary scan
test access port, scan input and output pins, and di-
rect access test buses are typically for this purpose.

A few seconds of functional test may apply millions of
patterns to a chip. In contrast, due to power, noise,
and tester bandwidth considerations, the serial load-
ing of test vectors from the DFT ports may be slow,
and the number of test vectors that can be applied
from the structural tester may be far fewer than in a
functional test environment. This has implications for
the quality of the structural test set.

Speed Test
Unlike many standard parts, microprocessors are
binned for speed. This necessitates speed test, where
the objective is to determine the maximum frequency
at which the part can be operated. In the past, a small
set of the worst speed paths was identified, and tests
written to exercise these paths were used to charac-
terize the speed of the device. With increasing die
sizes and shrinking device geometry, in-die process
variation is becoming significant. It is no longer safe to
assume that all paths will be affected equally, and a
larger set of representative paths needs to be tested to
determine the maximum operating frequency.

One of the implications of applying vectors in the DFT
mode is that the device may not be tested in its native
mode of operation. Special-purpose clocking mecha-
nisms are implemented to apply the tests to the tar-
geted logic blocks after they have been loaded. The
electrical conditions, background noise, temperature,
and power supply may all be different in the DFT mode.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 5

These factors introduce inaccuracies, necessitating
guard-bands, in measuring the speed of the device.

I/O Timing Test
Traditional I/O functional testing relies on the ability of
the tester to control and observe the data, timing, and
levels of each pin connected to a tester channel. The
testing of the I/O buffers can be divided into three
basic categories: timing tests (e.g., setup and valid tim-
ings), level tests (e.g., Vil and Vol specifications), and
structural tests (e.g., opens and shorts). The timing
specifications of the I/O buffers are tested during the
class functional testing of the device. With the use of
structural testers, dedicated pin electronics are no
longer available on the tester to make timing measure-
ments on each I/O pin on the device.

Assuming that the I/O circuit meets the design target
and that timing failures are results of defects at the I/O
circuits, the problem of testing complex timing becomes
one of screening for these defects, instead of the ac-
tual timing specification itself.

Defect-Based Test

Applicability of the Stuck-At Fault Model
Although functional patterns are graded against the
single stuck-at fault model, it is well known that most
real defects do not behave like stuck-at faults. In-
stead, stuck-at fault coverage has been used as a stop-
ping criterion for manual test writing with the knowl-
edge that the functional tests would catch other types
of defects that impact device functionality. This mea-
sure of test quality worked quite well for a long time.
However, in the recent past, there is conclusive data
from sub-micron devices that proves that the outgoing
DPM can be further reduced by grading and devel-
oping functional tests using additional fault models such
as bridges etc. Therefore, the success of the single
stuck-at fault model cannot be guaranteed as we move
further into the sub-micron devices.

The quality of ATPG patterns is only as good as the
quality of the targeted fault models. As the test envi-
ronment forces the transformation from functional to
structural testing, there is yet another strong case for
the development of better test metrologies than the
simplified stuck-at fault model. Defect-based test
addresses this risk by using better representations of
the underlying defects, and by focusing the limited struc-
tural test budget on this realistic fault.

What is Defect-Based Test?
Before we define defect-based test, we distinguish
between two terms: defect and fault model. Defects
are physical defects that occur during manufacturing.

Examples of defects are partial or spongy via, the pres-
ence of extra material between a signal line and the
V

dd
 line, etc. Fault models define the properties of the

tests that will detect the faulty behavior caused by de-
fects. For example, stuck-at 1 tests for line a will
detect the defect caused by a bridge between the sig-
nal line a and V

dd
.

It has been reported in the literature [5] that tests that
detect every stuck-at fault multiple times are better at
closing DPM holes than are tests that detect each fault
only once. This approach, called N-detection, works
because each fault is generally targeted in several dif-
ferent ways, increasing the probability that the condi-
tions necessary to activate a particular defect will exist
when the observation path to the fault site opens up.

Defect-based tests are derived using a more system-
atic approach to the problem. First, the likely failure
sites are enumerated. Each likely defect is then
mapped to the appropriate fault model. The resulting
defect-based fault list is targeted during ATPG. Tests
generated in this way are used to complement vectors
generated using the stuck-at fault model. Unlike the
stuck-at model that works off of the schematic data-
base, the starting point for defect-based test is the mask
layout of the device under test. Layout-based fault
enumeration is a cornerstone of defect-based test.

The use of better fault models is expected to enhance
any test generation scheme (ATPG, built-in self-test,
or weighted random pattern generation) because it
provides a better metric for defect coverage than does
the stuck-at fault model.

Although not a proven technology, defect-based test
is a strong contender for addressing some of the risks
of migrating from functional to structural test. The DBT
effort at Intel is aimed at proving the effectiveness and
viability of this approach. The following sections de-
scribe the key problems that have to be solved, the
specific tooling challenges in automating defect-based
test, and a system architecture showing DBT modules
in the overall CAD flow.

Challenges of Defect-Based Test

Enumerating Defect Sites
The number of all possible defects on a chip is astro-
nomical, and it is neither feasible nor worthwhile to
generate tests for all of them. Fault enumeration is the
task of identifying the most important defect sites and
then mapping them into fault models that can be tar-
geted by fault simulation and ATPG tools.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 6

To enumerate likely defect sites, we need to under-
stand the underlying causes of defects. Broadly speak-
ing, defects are caused by process variations or ran-
dom localized manufacturing imperfections, both of
which are explained below:

• Process variations such as transistor channel
length variation, transistor threshold voltage varia-
tion, metal interconnect thickness variation, and
inter metal layer dielectric thickness variation have
a big impact on device speed characteristics. In
general, the effect of process variation shows up
first in the most critical paths in the design, those
with maximum and minimum delays.

• Random imperfections such as resistive bridging
defects between metal lines, resistive opens on
metal lines, improper via formations, shallow
trench isolation defects, etc. are yet another source
of defects. Based on the parameters of the defect
and �neighboring parasitic,� the defect may result
in a static or an at-speed failure.

Techniques used for the extraction of faults due to ran-
dom defects and process variations may differ, but the
fundamental approach is to identify design marginali-
ties that are likely to turn into defects when perturbed.
The output of a fault extraction tool is typically or-
dered by probability of occurrence.

Defect Modeling
To test a device, we apply a set of input stimuli and
measure the response of the circuit at an output pin.
Manufacturing defects, whether random or system-
atic, eventually manifest themselves as incorrect val-
ues on output pins.

Fault simulators and ATPG tools operate at the logical
level for efficiency. A fault model is a logic level repre-
sentation of the defect that is inserted at the defect
location. The challenge of fault modeling is to strike a
balance between accuracy and simplicity as explained
below:

• Accuracy. The output response of the logic-level
netlist with the fault model inserted should closely
approximate the output response of the defective
circuit for all input stimuli.

• Simplicity. The fault model should be tractable,
i.e., it should not impose a severe burden on fault
simulation and ATPG tools.

During the model development phase, the effective-
ness of alternative models is evaluated by circuit simu-
lation. Vectors generated on the fault model are simu-
lated at the circuit level in the neighborhood of the
defect site, using an accurate device-level model of

the defect. However, due to the number of possible
defect sites and the complexity of circuit simulation,
this can only be done for a small sample.

Defect-Based Fault Simulation
Simulation of defect-based models is conceptually simi-
lar to stuck-at fault simulation, with a couple of twists:

• The number of possible defect-based faults is or-
ders of magnitude larger than stuck-at faults, so
the performance of the tool is highly degraded. In
order to be effective, a defect-based fault simula-
tor has to be at least an order of magnitude faster.

• Defect-based faults may involve interactions be-
tween nodes across hierarchical boundaries, mak-
ing it impractical to use a hierarchical or mixed-
level approach to fault simulation. It is necessary
to simulate the entire design at once, which also
imposes capacity and performance requirements.

Defect-Based Test of Cache Memories

Background: The Growth of Caches for Micro-
processors
The use of caches for mainstream microprocessors
on Intel architectures, beginning in the early 90s with
the i486� processor, heralded a return to Intel�s origi-
nal technical core competency, silicon memories, al-
beit with several new twists. The embedded CPU
caches have increased in size from the 4K byte cache
of the i486 processor generation to 10s and 100s of
kilobytes on today�s processors and to even larger
embedded CPU caches being considered for the fu-
ture. This has resulted in a steady increase in the frac-
tion of overall memory transistors per CPU and in the
amount of CPU cache die area throughout the last
decade.

A second key cache test challenge is the increasing
number of embedded arrays within a CPU. The num-
ber of embedded memory arrays per CPU has gone
from a handful on the i486 and i860� processors to
dozens on the more recent Pentium® Pro and
Pentium® II processor lines.

Memory Testing Fundamentals: Beyond the
Stuck-At Model
The commodity stand-alone memory industry, i.e.,
DRAMs and 4T SRAMs, have evolved fairly com-
plex sets of tests to thoroughly test simple designs
(compared to the complexity of a modern micropro-
cessor) [6]. The targeted fault behaviors include
stuck-at, transition, coupling, and disturbs, and the
resulting number of targeted tests per circuit, per tran-
sistor, or per fault primitive on a memory is much higher
than for digital logic devices. On VLSI logic, the chal-

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 7

lenge is to achieve stuck-at fault coverage in the upper
90 percentile, while on stand-alone memories, the num-
ber of targeted tests per circuit component is typically
in the 100s or more likely 1000s of accesses per bit
within a robust memory test program.

One reason for the greater complexity of memory tests
is that at the core of a typical digital memory is a sen-
sitive, small signal bit, bit bar, and sense amp circuit
system. Even for stand-alone memories, access and
testing of the analog characteristics (e.g., gain, com-
mon mode rejection ratio, etc.) is not directly possible
and must be done indirectly through the digital inter-
face of address and data control and observability. A
large number of first order variables subtly affect the
observability of silicon memory defect behavior. There-
fore, most memory vendors characterize each variant
of a given product line empirically against a broad range
of memory patterns before settling on the test suite
that meets quality and cost considerations for high-
volume manufacturing. These characterization test
suites (also known as �kitchen sink� suites) consist of
numerous algorithmic march patterns and different sets
of cell stability tests (e.g., data retention, bump tests,
etc).

A key concept for robust memory testing is the logical
to physical mapping. On a given physical design of an
array, the physical adjacencies and ordering of bits,
bit lines, word lines, decoder bits, etc., typically do
not match the logical ordering of bits (such as an ad-
dress sequence from bit 0 to bit 1 to � highest order
bit. Memory tests are designed to be specifically struc-
tural where worst-case interactions of the implemented
silicon structures with true physical proximity are
forced. Thus the true physical to logical mapping is a
subsequent transform that must be applied to a given
memory pattern in order to maximize its ability to sen-
sitize and observe defects and circuit marginality.
Correct and validated documentation to the down-
stream test writer of the actual physical-to-logical
mapping is as important as other design collateral.

Embedded Cache Testing and DFT in the
Context of Logic Technologies
Testing of embedded caches also needs to consider
the context of related logic technologies. To start with,
the basic embedded cache memory cell is typically a
six transistor (6T) SRAM as compared to the more
typical DRAMs and four transistor (4T) SRAM of
the stand-alone silicon memory industry. The 6T
SRAM offers better robustness against soft errors and
can be thoroughly tested to acceptable quality levels
with somewhat simpler test suites. However, the criti-
cal motivating factor is that a 6T SRAM cell is fea-
sible, within the context of a high-performance logic
silicon fabrication process technology, without addi-
tional process steps.

The smaller size (area, # bits) and 6T cell of the em-
bedded CPU cache make it less sensitive than the
stand-alone commodity 4T SRAMs and DRAMs.
This is somewhat offset by the fact that embedded
caches are generally pushing the SRAM design win-
dow on a given fabrication technology for system per-
formance reasons. Therefore, adequate testing of
embedded 6T SRAMs requires an optimal use of ro-
bust memory test techniques targeted at defect be-
haviors, such as complex march algorithms and cell
stability tests.

A critical challenge for embedded SRAM caches is
the architectural complexity of access and observability
of such arrays compared to a stand-alone memory.
For example, for an embedded array such as an in-
struction cache or a translation buffer, there may not
be a normal functional datapath from the array output
to the chip primary outputs, making writing of even
the simplest memory algorithmic patterns such as the
10N March C- an extreme challenge for even the most
experienced CPU design engineers and architects.

In the end, the number and variety of caches and em-
bedded arrays in today�s microprocessors demand a
multiple of DFT and test solutions optimized to the
physical size and area of the various arrays, the per-
formance and cost boundary conditions, and the ar-
chitectural and micro-architectural details of an em-
bedded array�s surroundings. Circuit-level DFT, such
as WWTM [7], can offer targeted structural cover-
age, in this case against cell stability issues and weak
bits. External access via special test modes or self-
test (BIST) circuits may provide the better solution
within different sets of variables. However, care must
be taken to ensure the completeness and correctness
of the solution in any case and that some level of struc-
tural approach is used, i.e., appropriate stimulus-re-
sponse mapped to the physical implementation of the
memory structures. Different types of memory struc-
tures, e.g., small signal SRAMs, full Vcc rail swing
CMOS register files, CAMs, or domino arrays, each
require a targeted structural approach mapped to their
strength and weaknesses with respect to defect re-
sponse.

Technology Development Strategy
The technology for defect-based test spans multiple
disciplines in design, CAD tooling, and manufactur-
ing. Although individual components have been tried
both within Intel as well in academia and industry, real
data on high-volume, high-performance microproces-
sors is needed to establish the value of this approach.

The defect-based test program at Intel emphasizes
early data collection on the effectiveness of fault mod-
els. Partnerships with design teams interested in pio-
neering these new capabilities as they are developed

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 8

form a cornerstone of this effort. Technology devel-
opment proceeds in phases as follows:

• Fault model development. There are a large
number of possible defect types that can be mod-
eled. Defects are chosen for modeling based on
frequency of occurrence, ease of modeling, es-
cape rate, and perceived importance to the part-
ner design team. Bridges and path delay faults
will be the first set of fault models to be investi-
gated.

• Tool development. A minimal set of prototype
tools is developed for the enumeration and simu-
lation of the target fault models. These tools are
targeted for limited deployment to a select group
of experts in the project design team. The focus
of tool development is on accuracy, not perfor-
mance. Where possible, the tools are validated
against existing �golden� capabilities.

Tools for defect enumeration need to leverage
physical design and performance verification tools.
Close co-operation with tool builders and project
design automation teams is required to build on
existing tools, flow, and data in order to facilitate
the defect-extraction process.

• Enumerating fault sites. The actual task of enu-
merating fault sites is performed jointly by the tech-
nology development team and the design team.
Working together, test holes such as new archi-
tectural enhancements or modules for which legacy
tests could not be effectively ported are identified.
Fault grading resources are allocated for defect-
based test on those regions. When available, data
from the FABs are used to assign probabilities to
defect sizes.

• Test generation. Defect-based tests are gener-
ated by first grading functional validation and tra-
ditional fault grade vectors, and then by targeting
the undetected faults for manual test writing. Test
writing is necessary at this time because a defect-
based ATPG is not yet available, and the legacy
designs on which the technology is being pioneered
do not have adequate levels of structured DFT.
To contain the cost of test writing, defect-based
tests are written for carefully selected modules of
the design.

• Model validation. Model validation requires
close partnering with the product engineering team.
Some changes are required to the manufacturing
flow to collect data on the unique DPM contribu-
tion of the defect-based tests.

Data from the model validation phase is fed back
into model development, as illustrated below. Once
a particular fault model is validated, we will enter

into development (or co-development with a tools�
vendor) of an ATPG capability for that model.

Figure 4: Technology development process flow

Defect Modeling

Modeling of Random Defects
The challenge in fault modeling is to capture a general
cause and effect relationship that can be easily simu-
lated or targeted in the case of automatic test pattern
generation. A degenerate case of this general approach
is a line stuck-at fault model where output at a node is
always a logical zero or always a logical one regard-
less of the logic value it is driven by. Another popular
fault model that has been used to target random speed
failures is the transition fault model, which is essen-
tially a stuck-at fault with the addition of the condition
that the faulty node make a transition, i.e., be at the
opposite logic value in the cycle prior to detection.

In creating a realistic fault model for a defect, we must
avoid explicitly tabulating the behavior of the defect
for every state of the circuit. A table-driven approach
will not lend itself to a scalable automated solution for
design sizes that exceed 5 million primitives. The ap-
proach we use here is to transcribe the deviation in
analog behavior into simple conditional logical devia-
tions.

There are a large number of possible failure mecha-
nisms that cause random defects. Rather than de-

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 9

velop models for them all and then launch into model
validation, our approach is to stage the development
of models and tools to address defect types in the
order of their importance, and to intercept designs with
a complete prototype flow for each model as they
become available. This allows us to collect data on
the DPM impact of defect-based test early on, and it
provides feedback that we can use to refine our mod-
els.

One of the most common defect types today is inter-
connect bridges. As metal densities increase, the im-
portance of metal bridges as a defect-inducing mecha-
nism will grow. Interconnect bridging defects exhibit
a range of behavior based on different values of bridge
resistance.

This effect is illustrated for the circuit in Figure 5. There
is a bridge defect between node j and k in this ex-
ample. Node k is held at logic 0 as j changes from 0
to 1. The signal transition is propagated and observed
at output v.

Figure 5: Example circuit with a bridge defect

Figure 6 shows the output response of the circuit for
different values of the bridge resistance. Threshold
voltages are marked using horizontal dashed lines, and
the vertical dashed line shows the required arrival time
at node v for the transition to be captured in a down-
stream latch.

The plot shows three distinct circuit behaviors for vary-
ing bridge resistance. For low resistance values, the
output never reaches the correct logic value, and the
defect shows up as a static logic failure. For interme-
diate resistances, the output goes to logic 0 too late,
resulting in a speed failure. Very high bridge resis-
tances are benign from the viewpoint of correct logi-
cal operation of the circuit.

Figure 6: Output responses for a range of bridge
resistance

For low resistances, the defect can be modeled as
node j stuck at logic 0 with the condition that k is at
logic 0. Speed failures can be modeled as a slow-to-
rise transition at node j, with the condition that k is
held at logic 0. Such fault models, based on generali-
zations of the conventional stuck-at and transition
faults, are called constrained fault models.

As feature sizes are scaled down, the metal pitch is
reduced in tandem to increase density. Reduced metal
pitch in turn imposes limitations on the height of metal
interconnects that must also decrease to improve
manufacturability. Thus the line resistance per unit length
goes up almost quadratically. Sustained yield require-
ment dictates that defect densities remain the same,
which in turn implies that interconnect bridge defects
also scale in dimension. Higher bridge resistance
coupled with lower device resistance during ON state
results in more speed failures than hard failures as il-
lustrated in Figure 6 above.

Modeling of Systematic Defects
Not all defects are of a random nature. Known fac-
tors such as reticule position, die location on a wafer,
mask imperfections, polysilicon density, device orien-
tation, etc., cause systematic variation across wafers
and dice. These effects are expected to gain promi-
nence due to reduced noise tolerance as well as a gen-
eral increase in systematic variability because of such
factors as migration towards 300mm wafers, litho-
graphic equipment, and material re-use.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 10

Steeper production ramps are putting increasing pres-
sure on cutting down the time for design correction
and test creation based on silicon data. Thus model-
ing such effects is critical to the success of test.

Process variations lead to delay problems. There-
fore, using information of process variations in speed
test target selection needs to be addressed.

Defect-Based Test Tooling Challenges

Defect Enumeration
The goal of defect enumeration is to prune the list of
all possible defects to a manageable number of the
most likely faults. Because the likelihood of a fault has
a strong dependence on layout geometry, process
parameters and timing marginality, defect enumeration
is a multi-disciplinary problem.

Here we describe layout-driven and timing-driven ap-
proaches to fault enumeration, and we discuss the in-
herent challenges.

Physical Design Inductive Fault Analysis
Inductive Fault Analysis (IFA) is based on the premise
that the probability of a defect occurring at a particu-
lar site is a function of the local layout geometry and
the distribution of failure mechanisms observed for the
manufacturing process. The most commonly observed
defects can be classified into two broad categories of
physical faults:

• Bridges occur when the defect causes a conduct-
ing path between two nodes that are electrically
isolated by design. The resistance of the bridge
can vary by process, layer, and defect mechanism.

• Breaks happen when the defect introduces un-
desired impedance along a conducting path. In
an extreme case, a break can result in an open
circuit.

These physical fault models are then mapped onto logi-
cal fault models that can be used for fault simulation at
the logical, or gate level, of abstraction. If the likeli-
hood of the defect mechanism causing opens and
breaks is known for the process, the physical fault
sites extracted by IFA are weighted by probability.
These probabilities can be used for pruning the fault
list, and for expressing the fault coverage obtained by
fault simulation in terms of the overall probability of
catching a defective part. This weighted fault cover-
age number can be a better predictor for outgoing
DPM than stuck-at fault coverage.

Traditionally, IFA has focussed on layout geometry and
defect distribution, and it has ignored the testability of
a fault. This last parameter is an important one: If the
faults identified using IFA are highly testable, i.e., eas-
ily covered by tests for stuck-at faults, then using an

IFA-based approach will not yield a significant incre-
mental DPM improvement over a standard stuck-at
fault model. Examples of highly likely and highly test-
able faults are bridges to power rails and clock lines.
Therefore, the challenge for effective IFA tools is to
identify faults that are both highly likely and relatively
difficult to detect using stuck-at fault vectors.

Because they work at such a low level of abstraction,
IFA tools need to be scalable in order to be effective
on increasingly larger designs. Two divide-and-con-
quer approaches can be applied to the problem:

• Hierarchical analysis. This is where layout blocks
are analyzed at a detailed level for bridges and
breaks on cell-level nodes, and at a global level to
analyze inter-block connectivity. The obvious
drawbacks of this method are that interactions
between wires across blocks, and between block-
level and chip-level layout, are ignored. This prob-
lem is accentuated by the increasing trend toward
over-the-cell global routing.

• Layout carving, or �cookie-cutting.� In this
approach, the layout is flattened and carved into
manageable pieces called �cookies.� Each cookie
includes the layout to be analyzed, as well as suf-
ficient surrounding context. A second phase is
required to roll up the results collected at the cookie
level, and to tie up the inter-cookie interactions.

Timing-Driven Analysis
As mentioned in a previous section, the performance
verification tools for large microprocessor designs are
not entirely fool proof. To begin with, the PV data-
base is made up of data from different sources, some
of which are SPICE-like simulations (very accurate)
and some of which are simple estimators. The net
result of this could be incorrectly ordered critical paths
(speed-limiting circuit paths). During silicon debug and
characterization, some of these issues are generally
uncovered.

However, some serious issues abound as we look into
the future. First, the increased on-die variation in deep
sub-micron technologies means that different paths on
the chip can be impacted differently. Further, the trend
towards higher frequencies implies fewer gates be-
tween sequential elements, which may lead to a larger
proportion of the chip�s paths having small margins.
These two factors combined pose one of the biggest
test challenges, namely, speed test.

It is no longer just sufficient to have a few most criti-
cal paths in the circuit characterized during silicon
debug. What is required is an automatic way to enu-
merate all such paths and then grade the structural tests
for �path delay fault� coverage. There are two main
issues that need to be solved. First, PV tool limita-

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 11

tions need to be worked around (issues related to gen-
erating an ordered list of critical paths), and second,
modeling issues related to mapping of paths from tran-
sistor level to gate level need to be resolved. (Fault
simulation happens at the gate level.)

It is likely that this huge path list can be pruned to a
more manageable size. Paths could be selected based
on their criticality of speed to the design and on their
diversity in composition in terms of distribution of de-
lay amongst various constituent factors such as delays
on all interconnect layers and actual devices.

Comprehensive Defect Enumeration
While layout analysis may identify potential bridge
defect sites, a resistive bridge may not always mani-
fest itself as a logic error. An example of such a situa-
tion would be if the defect site has adequate slack
designed into it, an increase in delay up to the slack
amount will not be ordinarily detectable. Slack may
change with a change in cycle time or a change in power
supply voltage, thus altering the test realities.

It is therefore required that the defect enumeration
scheme be coupled with timing analysis tools, which in
turn should be designed to understand the effect of the
test environment (temperature, voltage, cycle time) on
slack.

Defect-Based Simulation and ATPG
Traditional test automation tools need to be rethought
in the context of defect-based test. The fundamental
reason for the effectiveness of the stuck-at fault model
is that it opens up an observation path starting from
the fault site. Unfortunately, the conditions needed to
cause the erroneous circuit behavior may not be cre-
ated at the time the observation path is set up.

Data reported in the literature show that the effective-
ness of a test set could be improved by including vec-
tors that detect the same stuck-at fault multiple times,
in different ways. This approach, called N-detection,
is a random way to set up the conditions needed to
activate different failure modes. Defect-based fault
models take this notion a step further by specifying the
actual excitation conditions, called constraints.

• Excitation conditions. These are a relatively
straightforward extension to commonly used fault
models. Constrained stuck-at and constrained
transition faults behave like their traditional coun-
terparts except that the fault effect becomes mani-
fest only when an externally specified condition is
met.

Existing fault simulation and test-generation tools
can be used to simulate these models by augmenting
the target netlist to detect the excitation condition
and to inject the fault when it occurs. However,

this can be expensive in terms of netlist size for big
designs. Also, depending on the location of the
set of nodes involved in the constraints and the
fault location, the augmenting circuitry can cause
design-rule violations such as phase coloring.

• Propagation conditions. Certain types of physi-
cal faults (such as highly resistive bridges and
opens) can manifest themselves as localized delay
defects. However, the size of the delay is not al-
ways large enough to allow it to be treated as a
transition, or gross delay. In such cases, the ef-
fectiveness of the test can be increased, propa-
gating the fault effect along the paths with the low-
est slack. This method implies a tie-in to the tim-
ing analysis sub-system.

• Path delay fault simulation. Several path delay
fault models have been proposed in the literature
with a view to identifying tests that are robust (less
susceptible to off-path circuit delays), and to sim-
plifying the model to ease fault simulation and test
generation. Any of these fault models can be used,
but there are two new considerations:

Paths in high-performance designs are not always
limited to a single combinational logic block be-
tween two sequential elements. A path can span
multiple clock phases, crossing sequential elements
when they are transparent. A practical path delay
fault model should therefore be applicable to multi-
cycle paths. Note that such paths may feed back
onto themselves (either to the source of the path
or to an off-path input).

The second consideration is that fault simulation
and ATPG are typically performed at the gate level,
whereas paths are described at the switch level.
When a switch-level path is mapped to the gate
level, a path may become incompletely specified.
There may be multiple ways to test the same gate-
level path not all of which exercise the same switch-
level path. This problem can be addressed by
specifying gate-level conditions that will exercise
the switch-level path in a manner analogous to
specifying excitation conditions for random defects.

• Circuit design styles. High-performance designs
have core engines running at very high speeds and
external interfaces running at lower speeds. In
addition, there may be internal subsystems that run
at a different clock frequency. Test generation and
fault simulation tools have to be designed to ac-
commodate multiple clock domains running at dif-
ferent frequencies. The clocks are typically gen-
erated internally and synchronized. DFT design
rules, particularly those that check the clocking
methodology, need to be enhanced to handle such
designs.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 12

Another important design consideration is power
delivery and consumption. In order to reduce a
chip�s power needs, clocks are often gated to
dynamically turn off units that are not being used
at a particular time. In the past, many tool design-
ers assumed that clock-gating logic could be con-
trolled directly by external pins, or they treated
clock-gating logic as untestable. These assump-
tions are no longer valid.

• Capacity and performance. Next-generation
CPUs are expected to require 5 to 10 million primi-
tives to model at the gate level. The designs con-
tain on the order of a hundred embedded memory
arrays. These arrays have multiple read/write
ports, with some ports accessing only parts of the
address or data spaces of the array. In the past,
most ATPG tools have provided support for simple
RAM/ROM primitives that can be combined to
model more complex arrays. However, from the
point of view of database size and test generation
complexity, it is essential to directly support more
general behavioral models.

Defect-based fault models impose additional per-
formance requirements on the tools because of
the exploding number of faults that need to be tar-
geted. In order to deal with larger designs, shrink-
ing time-to-quality goals, and the larger number of
faults, the performance of test automation tools
needs to increase by an order of magnitude.

Failure Diagnosis
Automated failure diagnosis is valuable at different
stages of a product�s life: silicon debug and qualifica-
tion manufacturing test and analysis of customer re-
turns. Next-generation failure analysis tools have two
major requirements:

• They must support defect-based models. Diag-
nostic tools need to leverage the defect resolution
provided by the new fault models. This will en-
hance diagnostic resolutions by narrowing down
the probable cause of a failing device to one de-
fect-based fault, where partial matches were found,
before using the stuck-at fault model. Diagnostic
resolution can be further enhanced by the use of
defect probability for prioritizing candidate failures.

• They must support limited sequentiality for high-
performance designs that cannot afford scan DFT
in pipelined stages.

Defect-Based Tooling Framework
The design flow in Figure 7 shows the new CAD mod-
ules introduced for DBT and their relationship to ex-

isting design and test automation modules. The new
modules are highlighted in yellow.

Figure 7: Defect-based test system architecture

The left half of the flow is analogous to the traditional
fault simulation and ATPG flow. These tools work on
a gate-level model, which is generated either top-down
by synthesis of RTL, or bottom-up by logic modeling
of device-level circuits. The defect-based fault simu-
lator accepts fault lists of realistic defect models. Tra-
ditional ATPG vectors, as well as existing functional
tests, are fault simulated to filter out defect-based faults
that are detected by these tests. A defect-based ATPG
is used to generate tests for undetected faults.

The right half of the flow is for layout and timing-driven
fault enumeration, and it is new to DBT. The analo-
gous step for traditional ATPG is stuck-at fault enu-
meration and collapsing based purely on gate-level
analysis. Random faults are typically enumerated from
the layout with the possible use of interconnect ca-
pacitances obtained by RC extraction tools. Critical
paths for speed test are extracted from timing analy-
sis. The identified fault sites exist at the layout or de-
vice level, and they need to be mapped to the logical
level for fault simulation and ATPG.

Conclusion
In this paper we described the challenges faced by
Intel in continuing with functional test as the primary
mechanism for screening manufacturing defects, and
we examined structural test as an alternative. Three
major test quality risks were identified in migrating to
structural test:

• Reduced test data volume due to the inefficiencies
in loading test patterns from a structural tester.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 13

• The loss of collateral defect coverage provided
by functional tests that are applied at speed in the
normal functional mode of operation.

• Sub-micron trends indicating that interconnect
defects such as bridges and opens will dominate
the defect distribution. Simulation results were
presented that indicate that an increasing number
of defects will result in speed failures rather than
hard failures, requiring alternate ways of generat-
ing test patterns.

Defect-based test was introduced as an approach to
mitigate some of these risks by increasing the effec-
tiveness of ATPG-generated vectors. While this ap-
proach is intuitively appealing, it poses formidable chal-
lenges. Little hard evidence is available on the effec-
tiveness of such an approach. Fault models that rep-
resent defect behavior well, and are tractable from a
test generation viewpoint, have to be developed. Tools
for the enumeration of likely fault sites and for test
generation tools with the new fault models need to be
implemented.

The technology development strategy for DBT was
presented as an evolutionary cycle that builds on pro-
totype capabilities and uses strategic partnerships with
design teams. Silicon data collected from these ex-
periments are used to refine and validate fault models
and the tooling collateral as they are developed.

The tooling challenges for defect-based test for large,
high-performance designs were discussed. Commer-
cial capabilities that exist today are either insufficient,
or cannot be scaled to meet the needs of next-genera-
tion microprocessor designs. These challenges span
the design flow from logical to physical design, and
they will require a concerted effort by the CAD indus-
try to make defect-based test a robust, scalable solu-
tion.

Acknowledgments
The defect-based test effort spans three departments
in MPG and TMG. We thank Will Howell and Paul
Ryan of TT Q&R, Sujit Zachariah, Carl Roth, Chandra
Tirumurti, Kailas Maneparambil, Rich McLaughlin, and
Puneet Singh of Test Technology, and Mike Tripp,
Cheryl Prunty, and Ann Meixner of STTD for their
ongoing contributions.

We have benefited greatly from feedback received
over the course of several technology reviews held
with the Willamette DFT team, in particular Adrian
Carbine, Derek Feltham, and Praveen Vishakantaiah.

References
[1] Schnarch, Baruch, �PP/MT Scoreboarding: Turn-
ing the Low DPM Myth to Facts,� Proceedings of
the 1998 Intel Design and Test Technology Con-
ference, pp. 13-18, Portland, OR, July 21-24, 1998.

[2] Wayne Needham, internal memo based on data
extracted from 1997 SIA Roadmap.

[3] Design and Test Chapter, National Technology
Road Map, 1997, available on the Web (URL:
www.sematech.org).

[4] �Sematech Test Method Evaluation Data Sum-
mary Report, � Sematech Project S-121, version 1.4.1,
1/30/96.

[5] S.C. Ma, P. Franco, and E.J. McCluskey, �An
Experimental Chip to Evaluate Test Techniques Ex-
periment Results,� Proceedings 1995 Int. Test Con-
ference, pp. 663-672, Washington, D.C., Oct. 23-
25, 1995.

[6] A. J. van deGoor, Testing Semiconductor Memo-
ries, Theory and Practice, John Wiley and Sons, Ltd,
England, 1991.

[7] A. Meixner and J. Banik, �Weak Write Test Mode:
An SRAM Cell Stability Design for Test Technique,�
Proc. 1996 Int. Test Conf., pp. 309-318.

[8] A. Carbine and D. Feltham, �Pentium Pro Pro-
cessor Design for Test and Debug,� IEEE Interna-
tional Test Conference, 1997, pp. 294-303.

Authors� Biographies
Sanjay Sengupta received an MSEE in electrical and
computer engineering from the University of Iowa and
a B.E. (Hons.) in electrical and electronics engineer-
ing from BITS, Pilani, India. He works on the devel-
opment of test tools and methodology for next-gen-
eration microprocessors, and currently manages the
defect-based logic test effort. Prior to joining Intel, he
worked on test automation at Sunrise Test Systems
and LSI Logic. His e-mail is
sanjay.sengupta@intel.com.

Sandip Kundu has a B.Tech (Hons.) degree in elec-
tronics and electrical communication engineering from
IIT, Kharagpur and a PhD in computer engineering
from the University of Iowa. Prior to joining Intel, he
worked at IBM T. J. Watson Research Center and at
IBM Austin Research Laboratory. Sandip has pub-
lished over forty technical papers and has participated
in program committees of several CAD conferences
including DAC, ICCAD, and ICCD.
His e-mail is sandip.kundu@intel.com.

Intel Technology Journal Q1�99

Defect-Based Test: A Key Enabler for Successful Migration to Structural Test 14

Sreejit Chakravarty received his BE in electrical and
electronics engineering from BITS, Pilani and a PhD
in computer science from the State University of New
York. He joined Intel in 1997. Prior to that, from
1986-97, he was an Associate Professor of Com-
puter Science at the State University of New York at
Buffalo. Sreejit has published over 70 technical pa-
pers and has served on the program committee of sev-
eral international conferences, including VTS and VLSI
Design. He has co-authored a book on I

DDQ
 testing.

His e-mail is sreejit.chakravarty@intel.com.

Praveen Parvathala received an MSEE from New
Jersey Institute of Technology in 1989. Since then he
has been working at Intel. As a designer, he contrib-
uted to the development of the i860, Pentium and
Merced microprocessors. Since 1995 he has been
working on DFT and is currently involved in the de-
velopment of defect-based DFT methods and tools in
MPG�s Test Technology group.
His e-mail is praveen.k.parvathala@intel.com.

Rajesh Galivanche received his MSEE from the Uni-
versity of Iowa in 1986. Since then he has worked in
the areas of Design for Test, ATPG, and simulation.
Previously, Rajesh worked at Motorola, LSI logic,
and Sunrise Test Systems. Currently, he manages the
Logic Test Technology development team in the Mi-
croprocessor Product Group.
His e-mail is rajesh.galivanche@intel.com.

George Kosonocky received his BSEE from
Rutgers University. He presently manages MPG�s
Test Technology organization and has held various
management positions at Intel since 1983 in design
engineering, marketing, quality and reliability, and
program management. George holds a patent in
non-volatile memory design. His e-mail is
george.a.kosonocky@intel.com.

Mike Rodgers received a BSEE from the University
of Illinois in 1986. He has been with Intel for 12 years
in various capacities in Microprocessor Q&R includ-
ing managing A4/T11 Q&R and FA groups in Santa
Clara and IJKK. He currently is responsible for TT�s
Cache Technology and co-chairs the TMG-MPG
Test Technology Planning Committee.
His e-mail is michael.j.rodgers@intel.com.

TM Mak is working on circuit and layout-related DFT
projects. He has worked in product engineering, de-
sign automation, mobile PC deployment, and design
methodology for various products and groups since
1984. He graduated from Hong Kong Polytechnic in
1979. His e-mail is t.m.mak@intel.com.

	preface
	forward
	nike
	circuit_design
	datapath_design
	cross_platform
	floating_point
	defect_based

