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Abstract: Quantitative determination of most economic valuable metals in waste is the first funda-
mental operation of evaluating the feasibility of recycling processes. Field-portable X-ray fluorescence
spectrometers (FPXRFs) represent a more practical, efficient, and economic tool in determining the
elemental composition of samples with respect to conventional analytical techniques, such as atomic
absorption spectrometry (AAS) and inductively coupled plasma emission spectrometry (ICP). In
this paper, quick and smart determination of gold content in printed circuit boards (PCBs) of waste
mobile phones was studied. The aim of the research was to combine the practicality of FPXRFs
with the reliability of quantitative spectrometry analysis and evaluate the error between the two
techniques. Several samples (33) of PCBs were ground to a size below 0.5 mm, and then, the powders
were analyzed by FPXRFs at different acquisition times with five replications for each sample. The
same analyzed samples then underwent chemical attack to determine the quantitative gold content
by AAS. The obtained results were associated with FPXRFs response with the purpose of realizing
a calibration curve (100–1000 mg/kg Au). The curve was validated for accuracy and precision by
other PCBs waste samples; the control samples were added as standards to obtain a more reliable cal-
ibration curve. The curve was evaluated with RPD classification, regression linear, and Bolt–Altman
analysis.

Keywords: field-portable technology; X-ray fluorescence; calibration; gold; waste mobile phones

1. Introduction

In the current context of increasing pressure on resources and environment caused by
production and consumption, the concept of circular economy responds to the desire for
sustainable growth. To date, the economy is led by the “production–consumption–disposal”
model, which is a linear model, where each product is destined to reach the end of its life.
The transition to a circular economy shifts the focus to reducing, reusing, and recycling
existing materials and products, and what generally was considered as waste must now
necessarily be turned into a resource. Thanks to this approach, rather than waste being
viewed as a problem, it is seen as a valuable resource that can be managed to produce
sustainable benefits.

Determination of chemical composition of waste is crucial to ensure it receives the
most suitable management; information about elemental concentration, such as valuable
or pollutant elements, allows for the identification of the best treatment to recover valuable
elements and to remove pollutant ones.
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Currently, the chemical characterization of waste is performed in laboratories using
instrumental methods, and the most important are atomic absorption spectroscopy (AAS)
and inductively coupled plasma mass spectroscopy (ICP-MS). These methods require
the dissolution of solid samples by aqua regia or other strongly acidic mixtures. For
this, AAS and ICP-MS are particularly costly and time consuming, and require qualified
personnel [1].

The measure of the element concentrations with sufficient accuracy could provide
relevant advantages for the management of the waste, both for proper disposal and for
possible recovery of materials. In particular, the composition of waste may be associated
with its economic values; preliminarily, it is possible to determine whether a recovery
process can be economically feasible. In this case, a fast but accurate characterization is of
considerable importance.

Field-portable X-ray fluorescence spectrometry (FPXRF) could be an alternative to
AAS or ICP-MS. FPXRF has the advantage of being a fast and non-destructive technique
that can provide both quantitative and qualitative measurements of materials [2,3]. Other
advantages of the use of the FPXRF for analytical purposes, with respect to other tech-
niques, such as AAS, ICP-OES, and WDXS, are due to the low investment cost and time
consumption during the analysis, as many elements can be determined simultaneously.
Moreover, the analyses can be carried out on dried and solid samples and does not involve
acid attack and digestion of the samples, which is a heavy procedure both economically
and environmentally. The elements present in a wide array of soil and mineral matri-
ces can be determined, including the heavy metals present in contaminated soils, whose
concentrations can be analyzed in the field, contrary to the techniques cited above.

The applications concerning the FPXRF have been the subject of numerous papers:
mining and geological exploration uses [4–8], uses in relation to soil and sediments [9–15],
environmental uses [2,16–22], uses in relation to geochemical and geochemistry research [23–25],
and automotive uses [26]. This technique is also used for the fast identification of metals by
customs authorities for controlling imports and exports [27,28]. The limits in the optimal
elemental analysis of different types of materials are tied to: (a) the calibration developed
for a small number of elements of interest and limited concentration ranges that reduce the
analytical possibilities, (b) the factory calibrations, which are often developed for specific
applications, (c) the “a priori” choice of the measurement acquisition parameters that
often do not match the sensitivity needed by the operator for the particular analysis, and
(d) the absence of a protocol for the preparation of the sample for the analyses to assure the
reproducibility of the method.

In this study, we used a fairly simple technique that does not need elaborate calcula-
tions but solves the problem of the superimposing elemental spectral lines with a Bayesian
deconvolution [29–31]. The net intensity of the spectral lines was then normalized with a
Compton signal, whose intensity and shape are proportional to the atomic number [32] of
the element considered and of the density and composition of the material analyzed.

The calibration lines were obtained with a large number of standards made of different
matrices and containing the elements in a wide range of concentrations.

Two main approaches are currently applied to quantify the elements in a sample by
using the FPXRF, and their aim is to minimize the role of the matrix that mainly affects
the accuracy in the determination of the concentrations. The two approaches are briefly
described below:

(1) The fundamental parameter approach (FPA) and theoretical influence coefficients [33]
with some variations [34,35]. This approach consists of an algorithm that solves a
set of non-linear equations describing the dependence of the measured intensities
and the thickness of the samples with the element concentrations that have to be
determined. This method lacks accuracy for a set of samples that contain the elements
in a wide range of concentrations. Moreover, a model that is suitable for soils and
sediments may not be applicable for sludge and industrial waste. The concentration
of one element analyzed could be affected by the presence of the other elements; as a
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consequence, an accurate analysis requires the identification and quantification of all
the elements present in the sample, even if not of interest, to eliminate their influence.
A variant of this method is the empirical influence coefficient method [36] with filtered
and unfiltered spectra [37]. This method transforms the non-linear equations into
a set of linear ones. As pointed out by Rousseau [34], the accuracy of the results is
dependent on the nature of the sample and on the element concentration range.

(2) The multivariate statistical analysis (MVA) that demonstrates the interactions among
elements with statistical methods and makes the needed corrections. The present
work is the first to examine waste from printed circuit boards (PCBs) by using FPXRF
to measure gold. The purpose of the study is to objectively determine whether gold
can be detected by FPXRF and how the measurements can be compared with those
obtainable by the more accurate AAS technique, which is a laborious and expensive
procedure. The goal is to preliminarily evaluate whether FPXRF is suitable for fast
analysis of gold in waste in order to determine whether it is worth purchasing waste
to recover the precious metal.

2. Materials and Methods
2.1. Apparatus

An FPXRF spectrometer (Bruker IV SD model) equipped with an Rh anode (maximum
anode voltage 45 kV and maximum current 45 µA) was used. The beam at the surface of the
sample was about 4.3 × 3.4 mm. The tube voltage and the current of the tube for the gold
analysis were fixed at 40 kV and 15 µA, respectively, in air with an Al/Ti filter to remove
the background and the light element emissions. The content of gold was associated with
the area of the peaks.

Atomic absorption (AAS, Analytikjena, ContrAA 700, FKV, Torre Boldone (BG), Italy)
using the air–acetylene flame was used to measure gold concentration on 1 g samples
after their dissolution by acid attack with aqua regia by using a mixture of HNO3:HCl at a
1:3 ratio.

2.2. Calibration Curve Construction by Using Real Matrices

Printed circuit boards (PCBs) were selected to evaluate the suitability of FPXRF gold
measurements. For the construction of the calibration curve, 10 PCBs (named from S1 to
S10) were subjected to two stages of grinding: firstly, by using a cutting mill, and then by
pulverizing the obtained materials using a steel vibrating disc mill. The powders were
analyzed by FPXRF (Bruker-Tracer IV SD) at 180 s after preliminary investigations at
different times of 60, 90, 120, 150, and180 s. The acquisitions were performed on powders
reduced to a particle size of 0.5 mm [1,9], and the thickness was selected at 10 mm in order
to conduct the analysis on infinitely thick samples [38,39]. The powder was thickened by a
gentle and repeated impact of the container on a flat surface.

These parameters were kept constant for each acquisition to ensure data replicability.
Five replications, with an average error of 7.4 ± 4.3%, were made for each acquisition

by emptying the sample holder and subsequently feeding the sample in order to reduce
errors due to non-homogeneousness of the samples.

The same samples were analyzed by atomic absorption for gold content, making it
possible to associate the FPXRF analysis with the gold concentration obtained by AAS.

2.3. Evaluation of the Calibration Curve

The evaluation of the calibration curve was performed using waste powders after the
grinding and mixing of PCBs in different quantities used as standard. As for the construc-
tion of the calibration curve, 1 g of powder was analyzed by FPXRF with five replications,
and the same amount was analyzed by AAS. The content of gold was determined by
using the calibration curve realized above. The concentration of gold was compared with
the data obtained by AAS in order to identify the differences between the two analytical
techniques. A total of 33 PCB samples were analyzed to evaluate and improve the quality of
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the calibration curve. To elaborate, for each calibration curve, a series of unknown samples
was used for the validation. These samples were added to the calibration curve to increase
its robustness and accuracy. The first validation was performed with 13 samples; the
measurements were subsequently added as standard to obtain a more reliable calibration
curve. This step was repeated with the aim of making the calibration curve more accurate
(PCB samples 14–23). The last set of samples (PCB samples 24–33) was used to validate the
calibration curve obtained, considering all previous analyses.

The validation of the calibration curve was assessed by the relative percent difference
(RPD) defined as the sum of the absolute differences between the supposed true AAS
concentration and the concentration obtained by the calibration curve, divided by the AAS
concentration. For RPD < 10%, the calibration curve is excellent; for 10–25%, it is good; for
25–50%, it is fair; and if the value is > 50%, the validation is poor [9].

2.4. Statistical Analysis

The last 10 samples were the unknown samples used for the validation of the cali-
bration curve, as these were used to compare FPXRF and AAS measurement methods by
statistical analysis.

The Bland–Altman plot with limits of agreement (LA) was analyzed to investigate
the agreement between FPXRF and AAS measurements. LA was calculated using the
following relationship [40]:

LA = m.d. ± 1.96·σ (1)

where m.d. is the mean difference between the two measurements and σ is the standard
deviation of the differences.

A linear regression model was used to study the relationship between gold concen-
tration measured using AAS and FPXRF. Gold data were log transformed to satisfy the
hypotheses of the linear regression [1], and the resulting equation model is:

Y = a0 + a1·X + ε (2)

where Y is the log-transformed gold FPXRF concentrations, X is the gold AAS concentra-
tions, a1 is the slope of the straight line, a0 is the y-intercept, and ε is the residual. The
squared regression coefficient (R2) was used as measure of goodness of fit. The closer the
R2 value is to 1, the more the relationship between the two sets of concentrations measured
by two different methods is explained by a straight line.

3. Results
3.1. Calibration Curve Construction Using Real Matrices

Table 1 reports the peak areas and the gold concentrations determined by AAS for the
10 PCB samples analyzed for the construction of the calibration curve.

Table 1. Peak area for the XRF analysis and the relative concentration of gold obtained by AAS.

PCB Samples Au Peak Area—XRF Analysis Au Concentration
(mg/kg)—AAS Analysis

S1 1385.0 232.5
S2 9451.4 999.8
S3 2901.4 746.6
S4 2581.8 497.0
S5 1024.6 120.7
S6 3238.8 794.5
S7 1772.4 420.7
S8 20,146.0 943.1
S9 30,044.6 1000.2

S10 2030.4 431.2
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The gold concentration is within the range from 120.7 mg/kg to 1000.2 mg/kg, given
the relatively high variability in gold concentration of the PCBs in waste mobiles; this waste
is suitable for the construction of the gold calibration curve. For the concentration of gold
greater than 800 mg/kg, the response of XRF in terms of peak area was not reliable, as it
overly amplified the signal. For this reason, only seven out of ten standards were selected
for the construction of curve calibration by excluding the concentration above 800 mg/kg
(Figure 1).
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Figure 1. Calibration curve for FPXRF obtained by using real samples of PCBS as standards (number
of standards: 7).

The peak areas reported in Figure 1 were obtained by deconvolution of the spectra
after the identification of all elements contained in the matrices. The deconvolution of the
spectra was used to reduce interferences from other elements of the samples. The R2 is
above 0.95. This curve was evaluated with other similar waste samples of PCBs to verify
the robustness of the calibration and to calculate the deviation from the values determined
by AAS.

3.2. Evaluation of the Calibration Curve

The first evaluation was performed by using 13 samples of PCB waste powders.
Table 2 shows the gold concentration for AAS and XRF.

Table 2. Analysis of PCB samples: gold determination by XRF using the calibration curve and
by AAS.

Sample Au Concentration—AAS
(mg/kg)

Au Concentration—XRF
(mg/kg)

Difference
(mg/kg)

RPD
(%)

1 471.0 495.1 24.1 5.0
2 430.6 510.9 80.3 17.1
3 451.2 453.0 1.8 0.4
4 625.9 529.2 −96.7 16.7
5 254.4 251.0 −3.4 1.3
6 418.5 402.6 −15.9 3.9
7 764.3 745.7 −18.6 2.5
8 166.5 133.8 −32.7 21.8
9 778.1 796.5 18.4 2.3
10 663.5 650.3 −13.2 2.0
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Table 2. Cont.

Sample Au Concentration—AAS
(mg/kg)

Au Concentration—XRF
(mg/kg)

Difference
(mg/kg)

RPD
(%)

11 474.5 477.9 3.4 0.7
12 316.3 359.0 42.7 12.6
13 246.0 228.4 −17.6 7.4

average ±28.4 7.2

The average of the differences is ±28.4 mg/kg with a maximum value of 80.3 mg/kg
(overestimation of XRF) and a minimum of −96.7 mg/kg (underestimation of XRF), con-
sidering the gold concentration obtained by AAS as a reference. The average RPD (%) on
the 13 samples is 7.2%.

The samples used for the evaluation of the calibration curve were also used to improve
it, as reported in Figure 2.
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Figure 2. Calibration curve for FPXRF obtained by using real samples of PCBS as standards (number
of standards: 16).

R2 has a higher value than that obtained by using seven PCB samples (see Figure 1).
In order to assess the existence of a correction factor to align the XRF results with

those obtained by AAS and to consolidate the results, additional samples were used for the
evaluation of the curve. More in detail, due to the lack of data in the ranges 250–400 mg/kg
and 500–650 mg/kg, 10 samples obtained as mixtures of the previously standards were
selected for the validation. The results are reported in Table 3.

From these data, it is possible to observe that for the samples 14 and 22, XRF provides
unreliable values with an error higher than 150 mg/kg; to elaborate, XRF underestimates
the values obtained by AAS. For the remaining eight samples, the difference between the
values from the data provided by the two techniques was an average of 42 mg/kg; hence,
an RPD of 17.3% was calculated. A trend seems to be emerging in relation to previous
calculations: XRF underestimates the concentration of gold compared to AAS.
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Table 3. Analysis of PCB samples: gold determination by XRF using the calibration curve and
by AAS.

Sample Au Concentration—AAS
(mg/kg)

Au Concentration—XRF
(mg/kg)

Difference
(mg/kg)

RPD
(%)

14 650.4 487.5 −162.9 28.6
15 597.4 601.0 3.6 0.6
16 275.6 278.1 2.5 0.9
17 383.8 350.2 −33.6 9.2
18 671.0 646.9 −24.1 3.7
19 179.0 133.2 −45.8 29.3
20 276.2 201.8 −74.4 31.1
21 435.6 359.3 −76.3 19.2
22 566.5 380.5 −186.0 39.3
23 740.3 660.8 −79.5 11.3

average ± 68.9 17.3

Once again, data used for the evaluation of the calibration curve added new standards
to obtain a more reliable curve useful for gold measurement by FPXRF, as reported in
Figure 3.
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Figure 3. Calibration curve for FPXRF obtained by using real samples of PCBS as standards (number
of standards: 24).

The curve was evaluated using new PCB samples with the aim of confirming the trend
of XRF to underestimate the gold content. The results are reported in Table 4.

In this case, XRF overestimated the gold concentration obtained by AAS. The average
difference for gold concentration measured by XRF and the quantitative value obtained
with AAS for the same samples was ±72.6 mg/kg. Consequently, the error between the
quantitative technique of atomic absorption spectroscopy and the technique of portable
XRF observed for the 10 control samples resulted in a range of deviation of 13.4%, value
significantly lower than 20% as established by EPA Method 6200 for portable fluorescence
to consider acceptable the calibration [9]. The accuracy of the curve was estimated by RPD
and, the obtained value was 14.7%, also confirms a good calibration curve [9].
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Table 4. Analysis of PCB samples: gold determination by XRF using the calibration curve and
by AAS.

Sample Au Concentration—AAS
(mg/kg)

Au Concentration—XRF
(mg/kg)

Difference
(mg/kg)

RPD
(%)

24 578.8 588.4 9.6 1.6
25 668.4 579.5 −88.9 14.2
26 625.7 672.5 46.8 7.2
27 291.8 316.3 24.5 8.1
28 680.0 779.0 99.0 13.6
29 409.3 612.7 203.4 39.8
30 750.2 751.5 1.3 0.2
31 140.3 170.7 30.4 19.3
32 622.5 747.7 125.2 18.3
33 344.5 441.3 96.8 24.6

average ± 72.6 14.7

In order to evaluate the goodness of the calibration curve, the gold concentration
obtained by FPXRF and AAS was plotted, as shown in Figure 4.
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Figure 4. Regression of FPXRF and AAS concentration.

The R2 of regression between the two sets of data is near 0.98, and the regression line
matches the line well at a 45 degree, which is a sign of good accuracy of the curve.

3.3. Statistical Analysis and FPXRF

The results of the Bland–Altman plot analysis are shown in Table 5 and Figure 5.

Table 5. Results of Bland–Altman analysis of agreement between Au measurement using XRF and
AAS (mg/kg).

Bland–Altman Analysis (mg/kg)

Mean of difference 54.81
SD of difference 80.19

Limits of agreement
Lower −102.38
Upper 212.00

The mean gold concentration measured by FPXRF is 54.81 mg/kg lower than those
measured by AAS. The accuracy of FPXRF for the gold measurement versus the AAS
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method is 80.19 mg/kg, and the limits of agreement (LA) are between −102.8 and 212.00 mg/kg.
The range between the lower and the upper limit is 0.70 times the range between the
minimum and maximum value measured with AAS.
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Figure 5. Bland–Altman analysis of agreement between Au measurement using XRF and AAS
(mg/kg).

The analysis showed that there are not outliers; in fact, all of the values are within the
range of the lower and upper lines.

In regard to the regression analysis, two models were investigated for the estimation
of the parameters. The first model is described by the following Equation (3):

Y = 0.8746X + 0.3861 (3)

R2 for this model is 0.920.
The second model consists of a line passing through the origin in the absence of the

y-intercept. In this case, R2 is higher than that calculated with Equation (3) and equals
0.999. The value of the parameter is as follows:

Y = 1.018X (4)

Equation (4) describes the data (Figure 6), and this was considered for validation.
The variance theorem was used to assess errors in the estimation of parameters: the

value of the variance of error is σe
2 = 0.005.

For the validation of the model, it was assumed that the measure of gold falls within
the range defined by the chosen significance level (Equation (5)):

Yobserved = Ycalculated ± tα/2,n−1 σ
* (5)

where tα/2,n−1 is the t-Student value for a significance level of 95%, while σ* is the standard
deviation of the predicted value (Y calculated) that depends on σe

2, the number of samples,
and the AAS values. The R2 value was 0.999; therefore, the model showed a linear
relationship between the two measurement methods. R2 was used to classify the data
obtained by FPXRF; according to EPA [11], in the specific case, the data qualitive level was
assumed to be definitive (R2 > 0.900).
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Table 6 and Figure 7 report the results of the statistical analysis.

Table 6. Statistical results of the Au concentration.

Au
Concentration
Range (mg/kg)

AAS

Au
Concentration
Range (mg/kg)

FPXRF

R2 Gradient
of Line

Y-
Intercept Variance Standard

Deviation
Confidential

Interval

Data
Quality
Level

140.3–750.2 170.7–779 0.999 1.018 – 0.011 0.104

Range
0.061–0.154

Average
0.080
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Figure 7. Statistical confidence determined for the model (4).

The test of agreement revealed that the mean difference of measurements obtained
with AAS and FPXRF is 72.6 mg/kg. This result is independent of gold concentration range,
since the same mean difference was observed within the calibration range. The analysis
of the obtained results is necessary considering that AAS data are affected by chemical
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attack procedures, analytical error of gold measurement, and spectral interferences due to
the complexity of matrices [41]. R2 of linear regression (>0.90) analysis and RPD classifi-
cation suggest that FPXRF analysis of gold concentrations in waste gives a quantitative
measurement. Similar results were also obtained by other authors, as described in the work
of Havukainen et al. [42].

4. Conclusions

Field-portable X-ray fluorescence spectrometers were used to determine the gold
concentration from PCBs of waste mobile phones. The main aim was to determine whether
this technique can replace conventional analytical techniques, such as atomic absorption
spectrometry (AAS), that are more expensive and require more time consumption.

Firstly, a calibration curve was realized using waste samples of PCBs ground to a
size below 0.5 mm and analyzed using FPXRFs at different acquisition times with five
replications; then, the same samples were dissolved with aqua regia and analyzed using
AAS to determine the quantitative gold content. The obtained results were associated with
the FPXRFs response with the purpose of realizing a calibration curve (100–800 mg/kg
Au). After validation of the curve, a statistical analysis was performed to determine the
accuracy of the FPXRF measurements with respect to the AAS measurements. An RPD
value of 14.7% was found, confirming a good calibration curve. Bolt–Altman analysis
showed that the mean gold concentration measured by FPXRF is 54.81 mg/kg lower than
those measured by AAS. The accuracy of the FPXRF gold measurement versus that of
the AAS method is 80.19 mg/kg, and the limits of agreement are between −102.8 and
212.00 mg/kg. Moreover, the regression analysis shows a linear correlation between the
FPXRF and AAS measurements.

FPXRF could be used for semi-quantitative analysis in waste treatment as a fast
and non-consumable characterization of the samples in order to identify an economic
prefeasibility of a possible recycling and recovery process or possible negotiations on waste
management. A first screening of the material can be performed using XRF, which will
showcase the advantages of this method of analysis, i.e., speed, portability, and the lower
cost of measurements.
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