
1

Redundancy and High-Volume Manufacturing Methods

Christopher W. Hampson, MD6 Cache Product Engineering, Hillsboro, OR, Intel Corp.

Index words: I5, redundancy, raster

Abstract

This paper will describe practical aspects of a redundancy
implementation on a high-volume cache memory
product. Topics covered include various aspects of
redundancy from a design and product engineering
perspective; and present test development methods for
future product implementations.

As robust as Intel’s wafer fabrication processes are,
defects still occur, and wafer yields are the indicator. As
die sizes increase, so does the probability of a defective
die. Failure analysis has shown that a large percentage of
memory array defects are attributed to single-cell defects.
This implies that a single memory cell fault can cause an
array of over four million cells to be deemed non-
functional.

Redundancy is a method wherein “spare” array elements
are incorporated into the design to replace elements that
have tested defective. First, the basic redundant element
strategy must be decided upon. This involves evaluating
row, column, and block replacement schemes. Second ,
the replacement mechanism needs to be a known and
reliable entity (e.g., fuses). The design challenge is to
select how many redundant elements to add without
increasing the die size to the point where the total
number of good die is less than the overall yield without
redundancy. The critical factors are die size and defect
density. Yield forecasts and defect densities for a process
are usually available prior to the design phase and are
updated on an ongoing basis .

Introduction

The “I5” is the 512K byte second-level cache packaged
with the Pentium® Pro processor. It is one of the first
cache devices at Intel to use redundancy. By using this
design feature, the I5 has achieved one of the highest
yield levels for an Intel product. The overall yield
improvement on the I5 with redundancy is a generous
35%, and the cost savings are substantial.

I5 Architecture

The I5 architecture (Figure 1) consists of seventy-two
identical sub-array “blocks” that make up the data array.
It is organized into four quadrants, each containing
eighteen sub-arrays. One sub-array contains 64K memory
cells. Each sub-array corresponds to one input/output bit
on the device. “R” represents the redundant elements.

Figure 1: I5 Basic architecture

The goal for redundancy involves evaluating several
parameters to make a decision on how much redundancy
to incorporate. First, the non-redundant yield should be
calculated. This is determined from wafer size, number of
die, and defect densities for the fabrication process.

For a sample wafer with 33 testable die, and known die
size and nominal defect density , the “perfect die” yield
might be 20 die per wafer (D/W), without redundancy.

TAG

D A T AD A T A

D A T A D A T A

D A T AD A T A

D A T AD A T A

Q1

Q2

R

R

R

R

Q3

Q4

Intel Technology Journal Q4’97

2

Figure 2: Non-redundant wafer yield

With the addition of redundant elements, the die size
increases, so fewer die fit on the same size wafer. Hence
the “perfect die” yield decreases. We then need to be able
to predict for the same defect density, how many
additional die can be made functional for a total (perfect
plus redundant) die yield.

Figure 3: Total wafer yield with redundancy

Block replacement was chosen as the optimal strategy for
this architecture. Given this block replacement strategy,
the yield increase can be determined with defect
densities, die size, and sub-array size.

A yield multiplier can be calculated from the equation:

MULT = S (1 + 0.01 (N + I) Asb D / k) k

Where: S = Programming success rate
 N = # of sub-arrays
 I = # of redundant sub-arrays
 Asb = Sub-array area (mm2)
 D = Defect density (#/cm2)
 k = Constant for MOS processes
 0.01 = Conversion from mm2 to cm2

k is a constant derived from a formula for yield that is
based on an average value of the coefficient of variation
for the defect density distribution. This yield model is
discussed in detail in the paper entitled “Redundancy
Yield Model for SRAMS” also published in this issue of
the Intel Technology Journal.

Since the data array is divided into four quadrants , the
logical direction for determining how much redundancy
to incorporate in the design was to calculate yield with
the multiplier and evaluate for one or more redundant
elements (sub-arrays) per quadrant. This process revealed
one element per quadrant as the optimum strategy (the
sub-arrays labeled “R” in Figure 1). The tag array was
evaluated for redundancy and was considered too small
for an effective implementation.

Table 1 shows the predicted yield for both the non-
redundant and redundant cases. The multiplier equation
assumed a programming success rate of 100%. As die
size increases due to redundancy, the perfect die yield
decreases. For a nominal yield level, the redundant yield
multiplier is 1.49 times the perfect die yield of 18,
resulting in a 27 D/W final yield. This model predicts at
this defect density level, a 50% increase in yield over the
perfect die with redundancy; and a 35% increase over the
yield without redundancy.

This was the model used to predict yield for the I5. With
a nominal defect density, the predicted increase in yield
on the I5 was 50% over the perfect die yield with
redundancy; and 46% over the non-redundant case.

One Redundant Element per 18 Sub-Arrays

Yield Level
Defect
Density

(per cm2)

Perfect D/W
Non-

Redundant

Perfect
D/W with

Redundancy

Data Array
Yield

Multiplier

Total Good
with

Redundancy

Ratio to
Non-

redundancy
Low 0.8 13 12 1.85 22 1.7

Nominal 0.5 20 18 1.49 27 1.4
High 0.2 28 26 1.18 30 1.1

Non-redundant: Gross Die/Wafer = 36, Redundant: Gross Die/Wafer = 34

Table 1: Sample wafer redundant yield calculation

P = Perfect Die
Perfect Yield = 20
Gross Die = 36
Tested Die = 33

P = Perfect Die
R = Redundancy Die
Perfect Yield = 18
Redundancy Die = 9
Total Yield = 27
Gross Die = 34
Tested Die = 31

RRR

R R
R
R

RR

P
P

P
P
P

P
P

P
P

P

P

P
P

P
P
P

P
P

PP
P PP

P PP PP
P PP
P P P

P P P
P

Intel Technology Journal Q4’97

3

The Replacement Mechanism

The crux of any redundancy implementation is the
method used to substitute defective elements with
defect-free elements. On the I5, flash cells are
programmed to direct muxes that replace the defective
sub-arrays with defect-free sub-arrays.

Figure 4: Flash cell basic schematic

The flash cell is basically two transistors, one floating
gate, and a select gate (Figure 4). To program, a high
voltage is applied to the programming gate, and with
the select gate turned on, current will flow to the drain
of the floating gate transistor. This creates the fields
conducive to hot-electron injection, causing an increase
in the threshold of the floating gate. Cells should have
low unprogrammed switching thresholds (Vt) out of
fab, and once programmed, they should have high
switching threshold levels. For more information on
flash technology, refer to [1].

In Figure 1, a sub-array is replaced by its neighboring
sub-array, closest to the redundant sub-array. The sub-
arrays between the bad sub-array and the redundant
sub-array are also switched to their neighboring sub-
array. All this switching is done by muxes in the read
and write paths of the device.

One redundant sub-array per quadrant allows for one
and only one defective sub-array replacement per
quadrant, up to four per die. The task is to determine
the number of defective sub-arrays per quadrant. This
process is integrated with the cache raster capability.
Raster is a test process used to uniquely identify all
failing cell locations on the device. The redundancy
algorithm is integrated with the raster function to
identify the failing sub-arrays.

The Redundancy Algorithm

The basic idea of the redundancy test flow is to find the
devices that are defective, evaluate the extent of
replaceability (one failing sub-array per quadrant),
program the flash cells to effect the replacement of the

failing sub-array, and re-test to ensure the redundant
sub-array is defect free.

This is accomplished by obtaining fail information from
rastering, and modifying tests in the flow, that once
executed, will perform the programming and reading of
the flash cells. The algorithm is further enhanced by
ensuring the cells are programmed to a high reliability
level, detecting high Vt cells out of fab, and checks for
resorting wafers containing programmed cells.

The Details

The replacement process occurs early in the test flow, at
the Built-in-self-Test (Bist) step. This test checks every
memory cell in the data array. The flow starts when
this test fails (see Figure 5). This is the only point in the
entire test flow at which sub-array replacement is done.

At the raster step, all the failing cell information is
collected. It is also discerned if fails occurred in more
than one sub-array per quadrant.

Figure 5: Redundancy algorithm

BL
Prog

WL (Select)

Erase

 BIST
 TEST

 BIST
 TEST

 Continue

 Read and Send
 Flash Cell info
 to Database

 Collect Raster
 and
Replacement Data

 Redundancy
 OK ?

 Reliability
 Test Pass
 ?

 Any Flash
 Cells On ?

 Is Die
 Redundant
 ?

N

N N

Pass

Pass

Fail

Fail

Y

Y

Y

 Program all
 Flash Cells

 Any Flash
 Cells = 1?

 Flash Cells
 Read OK
 ?

N

N

N

Y
Y

Y

= Failed Die

Intel Technology Journal Q4’97

4

If not, the test flow is halted, and the die is binned non-
functional.

First the array is read and tested for all cells equal to
“0.” This checks for cells whose Vt’s are high enough
to read as a “1,” out of fab. If any cells are read as “1,”
the die is binned non-functional.

The flash cells are then programmed and tested for the
expected contents, and if a cell failed to program, it is
binned out. A reliability test is then done to ensure the
cells are reliably programmed. This test gives an
indication of a high Vt.

The BIST tests are then re-executed, passing die flash
cells are read and written to the database for possible
future failure analysis, and the die continues the test
flow.

If die passes the first BIST tests, the flash cells are read
to determine the die’s status. If any cells are read as
“1,” then it must be determined if this is a bad cell out
of fab, or a redundancy die. Once this determination is
made, the die is either binned non-functional or
continues the test flow.

The Production Results

Raster and replacement data indicated that 85% of all
die that failed the BIST screen could use redundancy.
After the first month in production, an average increase
in yield of 35% was evident. Subsequently, after
redundancy had been enabled for two quarters of
production, a cost analysis was performed. It showed
that all the replacement die had amounted to an
equivalent of 6696 wafers. The direct unit cost savings
were substantial. In addition to the direct costs, this
savings enabled the manufacture and sale of many
other Intel products.

Test Cost of Redundancy

An additional 1.5 seconds was needed to implement
redundancy on a die in the sort test program. An
analysis was performed to determine if redundancy
actually lowered the test time per good die, over an
entire lot. Considerations were good and bad die test
times with and without redundancy, and time to align
wafers and stepping to other die on the same wafer. It
was concluded in all cases for different yields that a
significant test time savings could be achieved. The
actual test time savings at nominal yield levels
amounted to 1.33 seconds per good die over the test
time without redundancy. Test time savings are greater
for lower yields.

Conclusions

The design yield predictions based on redundancy were
somewhat inflated due to the general model used.

 At nominal yield levels, the predicted increase was
(50%); the actual increase was (35%).

First, the factor that would inflate the prediction, yield,
is based on the wafer size and therefore is calculated
with the gross die per wafer count instead of tested die.
This is standard for yield calculations, so the initial
predictions counted on more die available for
replacement. Furthermore, a major contributor to the
degradation of the replacement rate was the 15% fallout
for those die whose data arrays had more than one
defect per quadrant.

A new redundancy model has been formulated that
takes into account the number of “tested die” and the
possibility of defect types that do not warrant
replacement.

The redundancy application with the I5 has shown that
there are other factors that would increase the accuracy
of a redundancy model. Quiescent current screening is
an important factor that will change for different
product types. This screen accounted for an additional
1% reduction in replacement rate, but could be higher
for products with tighter testing. The programming
success rate seen on the I5 was less than perfect at 97%.
This is due to redundant die that had defects in the
redundant sub-array, or die that failed to program flash
cells. An additional component is the reliability test on
the programming element. The position of the
replacement function in the test flow, and the test used
to determine if a die needed redundancy, are other
considerations that can alter the replacement rate. All
these factors can be incorporated into redundant yield
predictions in the future.

Summary

Improvements to yield prediction and implementation
aspects have been described. The I5 has shown that
redundancy makes sense on large arrays, and its
benefits are greater for lower yields. It can be
implemented and made production worthy, and
improved yields and substantial savings can be realized.

References

[1] Ohsaki, K., Asamoto, N., Takagaki, S., “A Single
Poly EEPROM Cell Structure for use in Standard
CMOS Processes,” IEEE J. Solid State Circuits, vol. 29,
No.3, March 1994, pp. 311-316.

Author’s Biography
Christopher Hampson is a product engineer in the
Microprocessor Products Group, Cache Products
Division. He received a B.Sc. degree in Computer
Science from National University, San Diego, Ca. He
joined Intel in 1993, was a lead product engineer on the
L2 cache for the Pentium Pro® processor, and is

Intel Technology Journal Q4’97

5

currently working on the next generation of Intel’s
cache products. His e-mail address is
champson@ichips.intel.com

