

The Relationship Between Cleanliness and Reliability/Durability

Debbie Carboni Global Product Manager

215-498-8856

Debbie_Carboni@kyzen.com

©2021 KYZEN Corporation

Outline/Agenda

- Introduction of Ionics and ROSE
- Evolution in technology
- Rev H in the IPC-J-STD-001
- Real World Case Study
- Conclusions
- Acknowledgements
- ■Q & A

Contamination

Ionic 🕸

Wide number of sources

Flux residue is commonly the primary source:

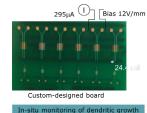
Inorganic ions
Wide variety of Weak Organic Acids Creates an electric charge in humid conditions lonic Residues on PCB Assemblies

-Electrically conductive -Lead to Several Failure Mechanisms

Non-Ionic

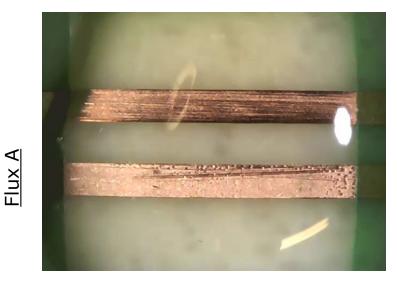
Not conductive

Insulating properties of residue surrounding conductors can lead to unwanted impedance.


No Clean fluxes are made with both organic and inorganic soils

If any component is soluble with liquid + either negatively or positively charge, they are ionic!

hydrogen, oxygen, nitrogen, sulfur



Every Flux Can (under certain conditions) Short or Fail!

In Real Time

Reflowed per Manufacturer's reflow profile

Flux B

Contamination

White residue propagates from anode to cathode

Resistivity Of Solvent Extract (R.O.S.E) WAS...

The Ionic Contamination Test Widely used prior to 2020

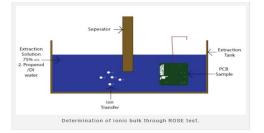
Used as both a validation test and a process control tool for collecting ionic data

©2021

- □ Equivalents of sodium chloride (NaCl) using Resistivity/conductivity
- □ 75/25 or 50/50 IPA/DI solvent media mixture.
- Different variations with/without heat, different tank sizes, pumps, differ sensitivity levels, cool software, etc....

Resistivity of Solvent Extraction

- Developed in 1970's
- Never intended as a cleanliness test or for acceptability, only monitoring
- Method developed for (wave solder flux) high solids (35%) rosin fluxes, large components, and few components which established the 1.56µg/cm²
- The US Government of Defense desired a Pass/Fail Criteria
- No Clean Flux did NOT exist

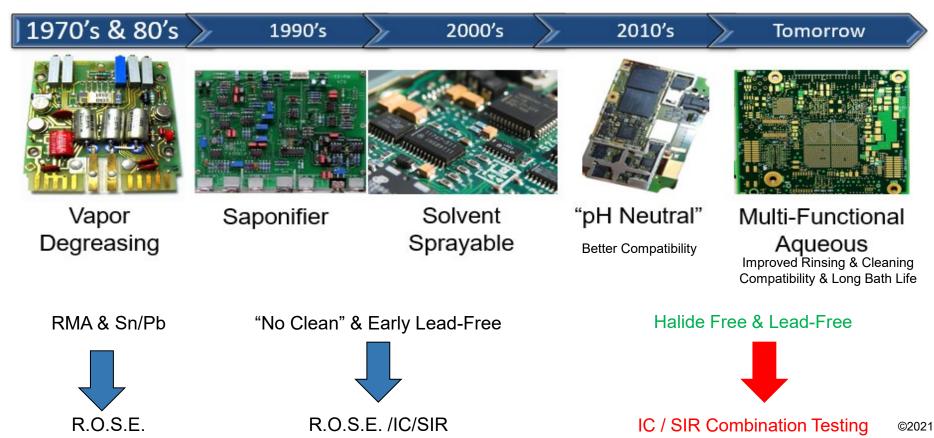


R.O.S.E. Overview

Resistivity of Solvent Extract (ROSE ~ IPC-TM 650 – 2.3.25)

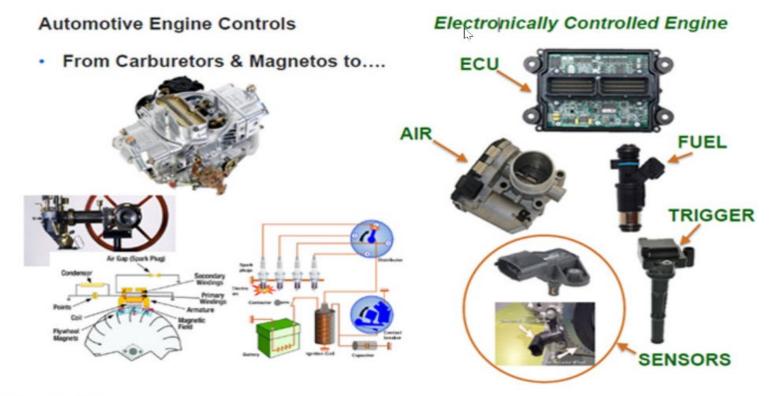
PRO's

- Quick "on the floor" test for large amounts of soluble lonics
- Can identify if you have an excessive amount of lonics on any part of the PCB.
- Quickly identifies handling or rinsing issues.
- Inexpensive tool and easy to operate


Worked well in the 1970's

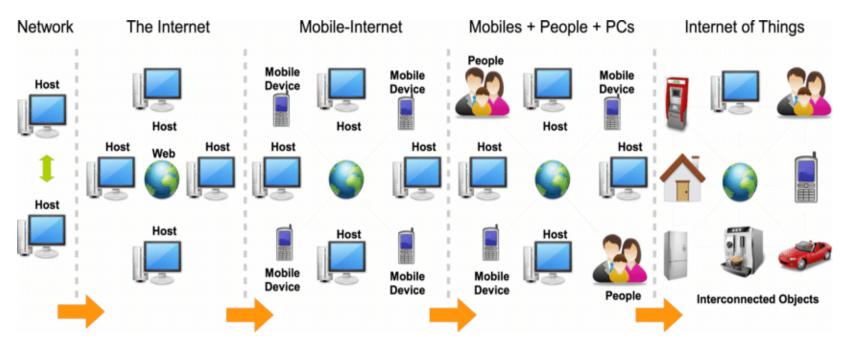
CON's

- Only identifies NaCl. Does not identify other types of lonics present on the PCB
- Probably will not identify if you have flux bridging the conductive path on a miniature type component.
- No Clean Flux and some surface contaminate are not completely soluble in IPA/DI water solution
- Different flux types take longer extraction times.
- Mo longer considered objective evidence.



Evolution of Technology, Cleaning Methodology & Validation

Mechanical to Electronic Control



Source: Eaton

©2021

Computers to IoT

Source: VTS, 15cS81_IoT module

Component & Flux Technology

Source: Apx Mfg

©2021

METRIC

Source: Shea Eng.

IPC J-STD-001 Rev G, Section 8

- 2018 Rev G Published (WP-019 can be referenced)
 - Required objective evidence for qualifications/ acceptance.
 - Determined no good answer on how to use the ROSE test on No clean assemblies,
 - Recommended it should not be used for monitoring of no-clean fluxes
 - Classified it as non-value-added testing, Obsolete practice.
 - Requalification Major vs. Minor
 - Ruled the ROSE test as not "Objective Evidence"

There is no ONE <u>method</u> to determine acceptably clean and unacceptably dirty

IPC J-STD-001 Rev H, Section 8

- September, 2020 Rev H Published (WP-019B)
 - Reemphasized "ROSE testing for monitoring of No-Clean assembly process should not be used"
 - Values of No-Clean materials do not equal cleanliness
 - Can be a destructive test
 - Non-value added testing
 - Emphasized the technology advancements and limitations of ROSE to detect value added levels
 - □ Still Required objective evidence
 - □ Removed 1.56µg/cm² value as a pass/fail
 - No single value can be used as a pass/fail for every product,
 - UCL limit may be determined in qualification with objective evidence

IPC Standards

- If you are IPC certified or claim you are following IPC guidelines, you must be using the latest IPC-Standard.
- If you are not certified, you should still be using the latest IPC-Standard or better quality controls

IPC J-STD-001H

Requirements for Soldered Electrical and Electronic Assemblies

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.

> Developed by the J-STD-001 Task Group (5-22A), J-STD-001 Task Group – Europe (5-22A-EU), J-STD-001 Task Group – China (5-22ACN) of the Assembly and Joining Committees (5-20) of IPC

Supersedes:
J-STD-001G - October 2017
J-STD-001F WAM1 -
February 2016
J-STD-001F - July 2014
J-STD-001E - April 2010
J-STD-001D - February 2005
J-STD-001C - March 2000
J-STD-001B - October 1996
J-STD-001A - April 1992

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC

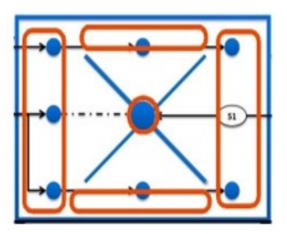
No-Clean Process and ROSE

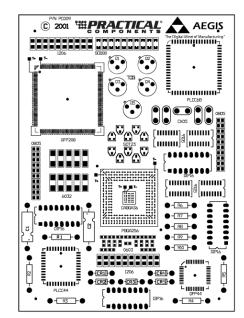
- Rose Test will identify
 - □ A rinsing issue
 - □ Improper handling of an assembly

ROSE TEST Might identify
 Dirty bare board

IT WILL NOT TELL YOU IF YOUR BOARD IS RELIABLE or Clean

Real World Case Study

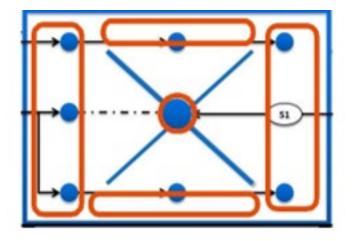

- Class 3 OEM-New chemistry qualification
 - Concentration was determined by lab testing
 - □ Objective to optimize cleaning parameters
 - Temperature and time
 - PCB location (as shown on next slide)
 - □ Validate the process
 - □ All other materials are stayed the same
 - □ ROSE Test used for monitoring



Optimization

IPC PCB-009 48 Test Coupons

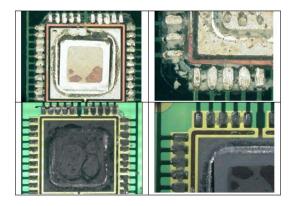
- RMA-35% solids wave flux
- SAC 305 No-Clean Paste
- SAC 305 No-Clean Core Wire for hand soldering
- Spray in Air Batch machine with low pressure (15-20 PSI)

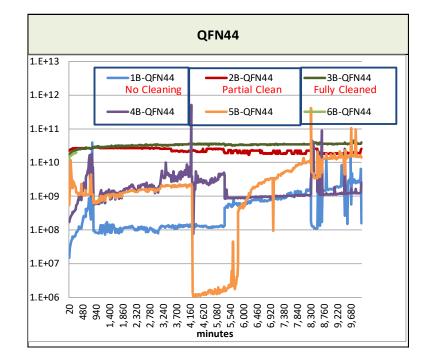

PCB Sample Size	Conc %	Wash Temp	Wash Times
12	20%	60°C/140°F	20 min
12	20%	60°C/140°F	30 min
12	20%	68°C /155°F	20 min
12	20%	68°C /155°F	30 min

Optimization

Score Each Set (6) PCBs Comparing

- □ Location inside chamber
- □ Temperature
- 🗆 Time
- Inspection Methodology
 - □ Visual (10X) (2 of both)
 - Mechanical removal of components after visual inspection
 - ROSE Test (2 from each set)
 - □ Ion Chromatography (2 of best results)

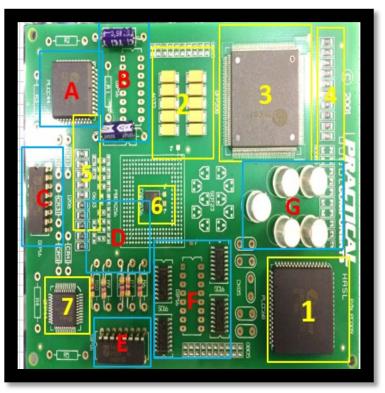




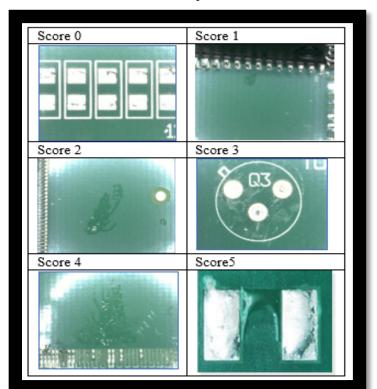
Past Studies

Various reflow and cleaning conditions

 Non cleaned, partially cleaned, show significant variation in performance, Visually and SIR

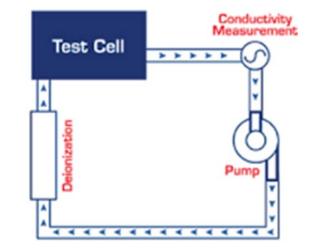


©KYZEN 2018



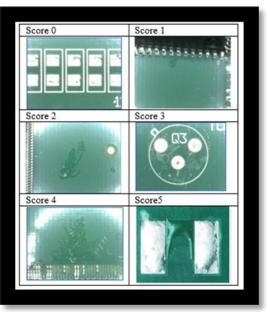
Site Locations and Scoring

PCB inspection Site Locations


Visual Key Guide

PCB ROSE Readings

- PCB's handled with fresh clean gloves
- PCB was placed onto a clean aluminum foil for inspection under microscope
- All assemblies passed the 1.56µg/cm²
 - □ Range from 0.1 to slightly over 0.45µg/cm²
- ROSE tests were non-conclusive:
 - □ Amount of flux residue
 - Location in Wash Chamber
 - Temperature or Time



Under Component Scores

Run	Conditions	Middle	Right	Midd	le Left	Middle M	liddle	тор с	orner	Bottom	Corner	Top Middle	Bottom Middle
		с	D	В	F	А	E	с	В	D	F	А	E
8	140F	B32/ NC1.9/ A.82			5-1/ 1-2 /2-3 = 13 total	5-1/1-2/1-3 = 10 total	1-1 1 total						
4	140F	B31/ NC .51/ A.64			4-1/1-3 = 7 total	6-1 = 6 total							
1	140F							3-1	B23/ NC.48 / A.72			3-1	3-1
6	140F							B36/ NC 1.6 / A.69				3-1	3-1
2	155F								B26/ NC 2.24 / A.71				4-1
3	155F								B25/ NC 2.41 / A.67				5-1
5	155F	B20/ NC 2.75 / A.72				9-1/2-2/1-4 = 17 total							
7	155F	B27/ NC 2.48 / A.66				3-1/1-2 = 5 total							

Visual Inspection Summary

Visual Key Guide

ROSE Scores Ranged in the 0 .3- 2.75 µg/in² NaCl

Under Component Scores

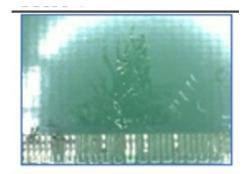
Run	Conditions	Middle Right Middle Left			e Left	Middle Mi	ddle	тор с	Corner	Bottom	Corner	Top Middle	Bottom Middle
		с	D	В	F	А	E	с	В	D	F	А	E
8	3 140F	B32/ NC1.49 / A.82			2-3	1-3							
	140F	B31/ NC.51 / A.64			1-3 =								
:	L 140F							3-1	B23/ NC .48 / A.72				
	5140F							B36/ NC 1.6 / A.69					
	2155F								B26/ NC 2.24 / A.71				
	3155F								B25/ NC 2.41 / A.67				
	1 155F	B20/ NC 2.75 / A.72				<u>1</u> -4 =							
-	7155F	B27/ NC 2.48 / A.66											

PCB's With Scores Of 1-2 Summarized

Visual Scoring Summary

Visual inspection at 10X

No measurable difference on amount of flux residue between both 60°C and 68°C,


- The middle of the chamber produced the most flux residue overall.
 - Outer edges and Middle of the chamber do not receive as much mechanical action, and this was visually noticed.

Measurable difference in the middle and outer edges of the chamber under components More residue in center of the inner chamber. Slightly more residue at 60°C

IC Testing was completed on PCB's not placed in the center area of the chamber

Impingement energy drives cleaning ROSE was Found as a Non-Value Add Test

Ion Chromatography IPC-PCB-009

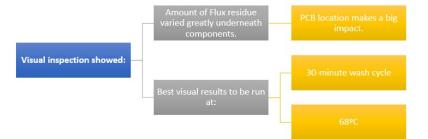
				Anion IC Dat	ta				
	28	3B	5C	7C		1B	4C	6C	8C
	Middle Edge	Top Right Corner	Top Left Corner	Top Right Corner		Top left Corner	Middle edge	Middle edge	Middle Edge
	155F	155F	155F	155F		140F	140F	140F	140F
	μg/in2	μg/in2	μg/in2	μg/in2		μg/in2	μg/in2	μg/in2	μg/in2
Fluoride	0	0.12384	0	0.124485		0	0	0.06192	0
Chloride	0.65145	0.201885	0.19479	0.333465		0.47859	0.378615	0.716595	0.240585
Nitrite	0.045795	0	0.04773	0		0	0	0	0
Bromide	0.28767	0.25284	0.19608	0.266385		0.234135	0.30702	0.359265	0.315405
Nitrate	0.271545	0.314115	0.427635	0.37668		0.650805	0.33927	0.58308	0.36636
Phosphate	0	0	0	0		0	0	0	0
Sulfate	0	0	0	0		0	0	0	0
Total Weak Organic Acids	2.24073	2.41488	2.74512	2.48325		0.480525	0.51342	1.602825	1.38804
				Cation IC Da	ta				
Lithium	0	0	0	0		0	0	0	0
Sodium	0.249615	0.416025	1.0449	0.400545		0.72627	0.557925	1.23582	0.844305
Ammonium	0.706275	0.66951	0.72369	0.661125		0.723045	0.636615	0.685635	0.818505
Potassium	0.456015	0	0.58953	0.401835		0	0	0.048375	0
Magnesium	1.51962	2.126565	1.52091	1.187445		1.669905	1.467375	1.30677	1.530585
Calcium	0.199305	0.178665	0.196725	0.21156		0.187695	0.17802	0.179955	0.17931
			C	2021					

Typical Industry Limits

		Fluoride	Acetate	Formate	Methanes ulfonic Acid	Chloride	Nitrate	Bromide	Nitrite	Phosphate	Sulfate	Weak Organic Acid	Weak Organic Acid	Lithium	Sodium	Potassium	Ammonium	Calcium	Magnesium	C3 - IPC Class 2 & 3	C3 - IPC Class 1																
		F*	C ₂ H ₃ O ₂ -	HCO2 ⁻	MSA	CI-	NO_3^-	Br-	N02 ⁻	P043-	S042-	SMT hand & selective	Wave direct contact	Li*	Na*	K*	NH4+	Ca ²⁺	Mg ²⁺	time/µA	time/µA																
	PCB Pre-mask																																				
ards	Via or PTH																		n/a																		
Bare Boards	Soldermask Surface	2.5	2.5	2.5	0.5	2	2.5	2.5	2.5	2.5	3	n/a	n/a	2	2	2	2.5	n/a		>120s/250µA	>60s/500µA																
Bar	SMT Pad Area																																				
	Innerlayer*										*10																										
	BGA																																				
lent	Reballed BGA																																				
Component	Tinned	1 3	3	1	1	1	2	6	2	2	1	25	n/a	1	2	2	2.5	n/a	n/a	>120s/250µA	>60s/500µA																
Con	IC Flip Chip																																				
	Trayed Component																																				
Ê	NC Via Top																																				
clea	Solder Area																																				
PCBA (no clean)	NC SMT	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	6	3	3	3	25	150	3	3	3	3	n/a	n/a	>120s/250µA	>60s/500µA
CBA	NC Wave																																				
4	Reworked																																				
	NC/WSF Via Top																																				
PCBA (clean)	Selective																																				
A (c	NC/WSF SMT	1	3	3	6	6	3	6	3	3	3	25	25	3	3	3	3	n/a	n/a	>120s/250µA	>60s/500µA																
PCB	NC/WSF Wave																																				
	Rework/Misprint																																				
are	Heat Sink																																				
ardw	Housing/ESD Foam																																				
Support Hardware	Thermal Material	1	3	3	1	2	3	6	3	3	3	n/a	n/a	1	1	3	2	n/a n/a	n/a	>120s/250µA	>60s/500µA																
oddi	Thermal Pad														1 3	3																					
Su	Battery Housing																																				

Source Foresite Labs

©2021


Optimization Conclusion

If only using Ion Chromatography and ROSE, All parameters would have been <u>classified as</u> reliable/clean

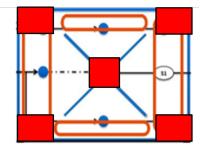
Visual residue scores of 3-4 could fail under bias due to ECM/Dendrites.

Middle and outer corner locations of chamber scored higher number of 3-4's at:

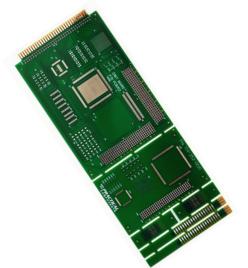
60ºC 20 Minute wash cycle

Qualification

19 PCB test boards for each test


IPC-B52 PCB

- 30 Minute Wash
- 20% Cleaning Agent
- 68ºC Wash Temperature
- No PCB's place in center of chamber
- Avoided placing PCB on outer edges


Ion Chromatography

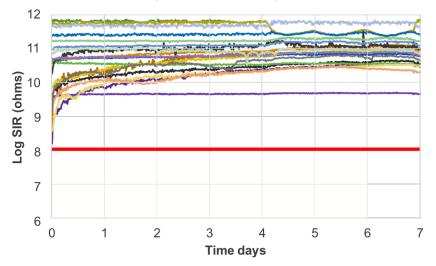
Surface Insulation Resistance (SIR)

• IPC-TM-650, Method 2.6.3.7

Areas in orange should be avoided to prevent inconsistent and indirect cleaning due to lack of pressure.

IPC- B-52 Cards

	Anion IC Data																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Fluoride	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
Chloride	0.0478	0.0427	N/D	0.0489	N/D	N/D	N/D	N/D	0.0495	0.0896	0.0744	N/D	0.0421	N/D	N/D	0.1846	0.0580	0.0611	0.0551
Nitrite	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
Bromide	0.0959	0.0717	N/D	0.0974	0.0275	0.0156	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	0.3467	0.2398	N/D
Nitrate	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	0.0048	N/D	0.0318	N/D	0.0082	0.0152	N/D	N/D	N/D	0.0530
Phosphate	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
Sulfate	N/D	N/D	N/D	0.1291	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	0.1436	0.1151	N/D	N/D	N/D	N/D
Acetate	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
Formate	0.0090	0.1507	0.3469	0.1915	0.1493	0.2200	0.1301	0.0955	0.0715	0.0907	0.0922	0.0814	0.0827	0.1108	0.2533	0.1839	0.0306	0.0614	0.0869
Methane Sulfonate	N/D	0.0263	0.0290	0.0533	0.0379	0.1004	0.0798	0.0858	0.1003	0.0495	0.0605	0.1295	0.0985	0.0826	0.1679	0.1027	0.1310	0.2199	0.1525
Total Weak Organic Acids	0.0090	0.1770	0.3759	0.2447	0.1872	0.3204	0.2098	0.1813	0.1718	0.1401	0.1527	0.2109	0.1812	0.1935	0.4212	0.2866	0.1616	0.2813	0.2394
								Cat	ion IC Da	ata									
Lithium	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
Sodium	0.2417	0.2757	0.2786	0.2836	0.2482	0.2663	0.2539	0.2543	0.2541	0.2306	0.2253	0.2396	0.2350	0.2254	0.2384	0.2669	0.2495	0.2545	0.2713
Ammonium	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	0.0144	0.1540	0.0859	N/D	N/D	N/D
Potassium	0.1247	0.1360	0.1368	0.1505	0.1170	0.1478	0.1141	0.1053	0.1131	0.1083	0.1138	0.1069	0.1068	0.1118	0.1180	0.1089	0.1466	0.1370	0.1238
Magnesium	0.0354	0.0348	0.0872	0.1350	0.1308	0.2245	0.1132	0.0487	0.0376	0.0395	0.0376	0.0351	0.0348	0.1038	0.1415	0.1280	0.0409	0.0334	0.1331
Calcium	0.1080	0.1360	0.1979	0.3760	0.1932	0.4030	0.2611	0.1455	0.1530	0.2299	0.2230	0.2127	0.2337	0.2719	0.2984	0.3135	0.2319	0.1916	0.4066


Table 1: Results of Anion/Cation IC Testing N/D=Not detectable. Units are µg/in2

IPC-B-52 SIR Summary

- All 19 card assemblies SIR values were all well above 1 x 10⁹ ohms.
- All 19 cards showed no dendritic growth or corrosion at 10X to 40X magnification

Chemical A paste and wave plus hand solder

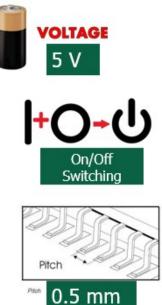
Transition to Newer Technology

QFN and similar flush mounted devices being implemented into designs

Supplier moved from batch process to inline cleaning at 0.5ft/min

Chemistry B @ 65°c, 15% concentration

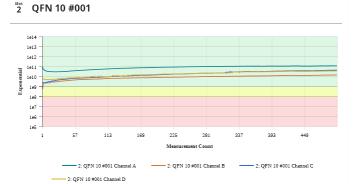

Due to earlier data findings, only SIR was completed on the QFN.



QFN 10 Card

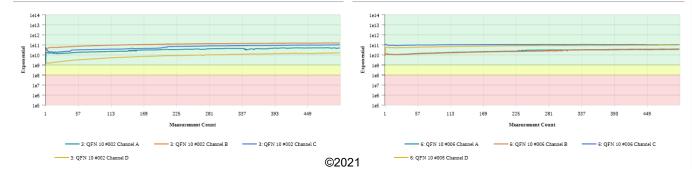
Quantity 5

SIR Test Overview



Source: Magnalytix with permission

QFN SIR Summary


^{stot} QFN 10 #003

------ 4: OFN 10 #003 Channel D

6 QFN 10 #006

3 QFN 10 #002

Conclusion

The Class 3 OEM validated the use of ROSE for measuring cleanliness is obsolete for their processes:

- Not all areas of the batch wash chamber provided the same cleanliness.
- ROSE Limit of 1.56µg/cm² does not provide useful monitoring readings.
 - □ Flux residue quantity under components from the center would likely fail under bias, yet measured well below 1.56µg/cm2
 - Different flux types and processes react differently in the ROSE.
- Ion Chromatography is a better measuring tool, but did not provide as much data as SIR testing to make process decisions.

Final Impressions

Step 1	Step 1 Understand not all devices or components require the same level of cleanliness. •ROSE limit 1.56µg/cm2 is obsolete.									
Step 2	Identify who needs to be involved in establishing cleanliness levels and methods (OEM and/or Manufacturer)									
Step 3	Document the end-use environment and required lifespan, and test methodology, cleanliness requirement based on the demand.									
Step 4	As your design changes, your cleanliness limits may also need to change.									
The Cost Of Not Cleaning Correctly										
Recall vs. Cleaning Correctly ©2021										

Acknowledgments

Magnalytix Team

- KYZEN Analytical Lab
- Charlie Pitarys, KYZEN

Thank You!

Debbie Carboni Global Product Line Manager, Debbie_Carboni@KYZEN.com

Phone 215-498-8856

Q&A Session

