

Stencil Cleaning-

A practical approach to improving yields and maximizing your through-put

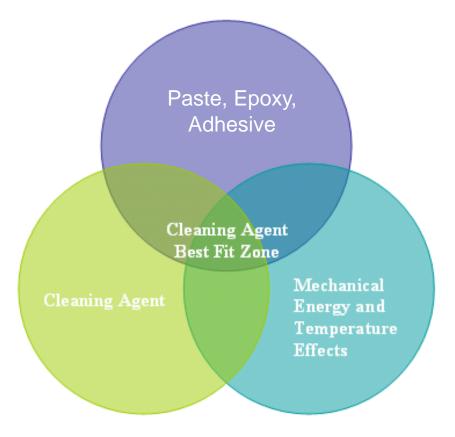
Debbie Carboni Global Product Manager

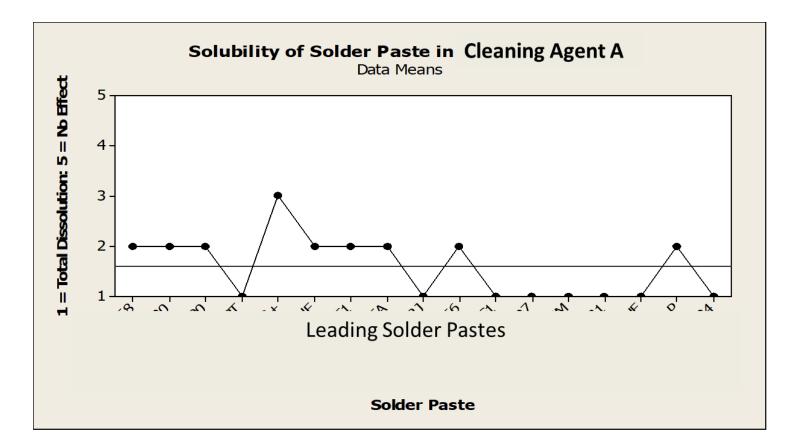
215-498-8856 / Debbie_Carboni@kyzen.com

Overview

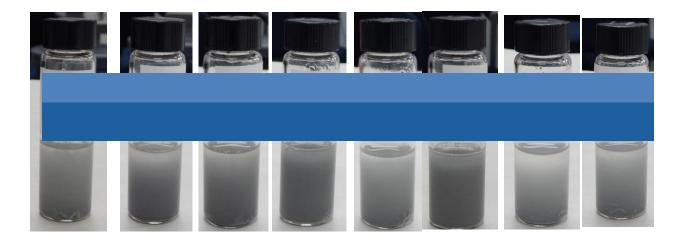
- Introduction
- Technologies for the job
- More than a flat piece of Stainless
 - Compatibility
- Solubility in stencil cleaning
- Influencing factors
- Best Practices to reduce misprints and increase yields

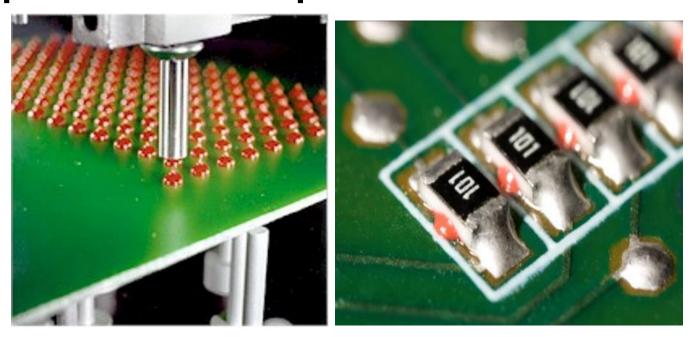
Introduction


- It's just a stencil...
- ...touches 100% of your products

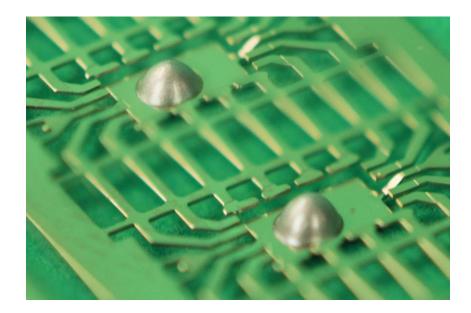

'Thanks for coming in. You've given me a lot to forget about after you leave."

Off The Printer Stencil Cleaning: Ultra Sonic or Spray-in-Air Or Manual?





Properly Engineered Solvent for Your Goo!


Chip Bonder/Epoxies

Silver Conductive Epoxy

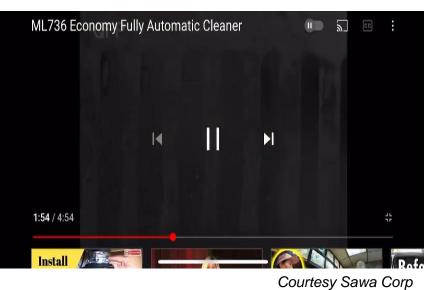
Stencil Cleaning Choices

Ultrasonic

With DI Rinsing With Solvent Rinsing Without Rinsing Manual Hand-Held Devices

Spray in Air

With DI Rinsing With Solvent Rinsing

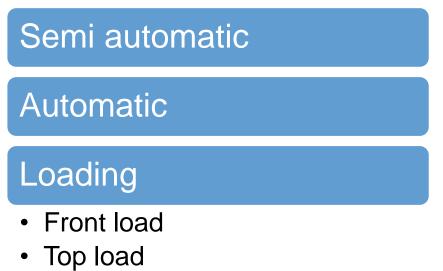


Manual wipe

Inside

Ultrasonic Stencil Cleaning

Spray-in-Air Stencil Cleaning



Courtesy Austin American

Each Technology Has Unique Approach

- Spray bar orientation
- Spray bar movement
- Drying technology

Side load

Cleaning Agents Choices

- Solvents
- Aqueous Cleaning agents
 - DI Rinse
 - Self Rinsing
 - Bi-Phase
 - Homogeneous

- Designed to optimize the energy
- Spray in Air
 - Designed with Deformer



Use the Right Product

Bi-Phase

- Have a defoam layer on top
- Must be kept fully Mixed to ensure consistent performance
- More difficult to rinse in
 Ultrasonic/Spray under Immersion
- □ Often do not cavitate well


- Homogenous
 - May Not have defoamer necessary for spray in air
 - □ May have higher alkalinity

Process Tips

- 1. Remove *all* excess solder paste from stencil before cleaning improves bath life
- 2. Wash Stencil as soon as it is removed form the printer
- 3. Recirculating filter on wash tank helps with bath life
- 4. Use temperatures at 120°F or below for Stencil
- 5. Higher temperatures can cure epoxies/adhesives
- 6. Avoid cleaning B-side Misprints in your stencil cleaner

Don't Forget

Additional Considerations

Ĵ Ĵ

Not all cleaning agents can remove adhesives Some cleaning agents, especially high alkalinity cleaners will remove a nano coating

Low or High pH DI water will remove the wipe on type coatings within a few wash cycles.

Flux, printing, etc also affect the life of the coating

Concentration has a major impact on bath life

Not all stencil cleaners will clean at the same parameters for every solder paste

Nano Coatings

Polymer Type Coatings

- Typically compatible with most chemistries
- Curing Process can have an impact on coating life

SAMP (wipe on)

 Have several benefit, however are more sensitive to pH of chemistry or rinse water
 Don't forget the flux

Evaluating your Process?

Do you periodically inspect your stencils? •inspect the apertures of a stencil on the shelf.	Do you have printing defects? •Would YOU like to improve their printing	Do you use a nano coating? What type? Do you inspect to make sure it is still on? •Use a Sharp to check the bottom of the stencil for coating?
Do you have white streaks on you stencils? •indicates poor rinsing	How often do you change your bath?	Do you clean misprints? Do you have an OSP coating? •Many material will remove OSP coating from PCB

Real World Case Study

Global CM Overview:

- □ Several NC/LF paste types
- □ Spray-in-air batch machine.
- History of Stencil damage due to chemical attack, poor performance, and/or high cost

Results:

- Easily removed all solder paste residue from the stencil surface while showing no negative effects to the stencil.
- The fine pitch apertures were 100% clean and no solder spheres were noted.
- There were no issues with long-term stencil compatibility

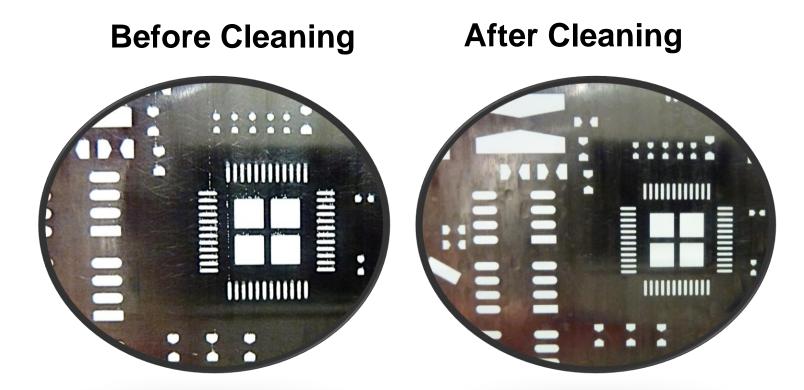
Cleaning Process Parameters		
Temperature:	Room temperature	
Cleaning Agent:	Homogenous Cleaning Agent	
Concentration:	15%	
Technology:	Spray-in-Air	
Time:	3 Minutes	
Drip:	4 Minutes	

The low operating concentration without decreasing effectiveness or bath life at ambient temperature provided the cost savings desired by the customer.

Real World Case Study

- Global Leading Automotive PCB Manufacturer:
 - 3 different No Clean, Lead Free solder pastes from SMT stencils.
 - The stencils with both nano coated and noncoated framed stencils from 4 different suppliers.
 - Ultrasonic stencil cleaning machines with No Rinse.

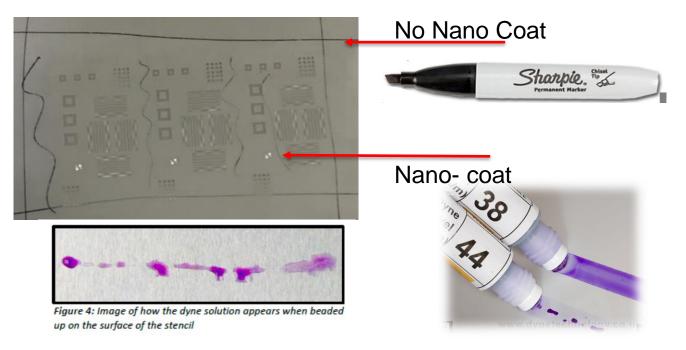
Results:

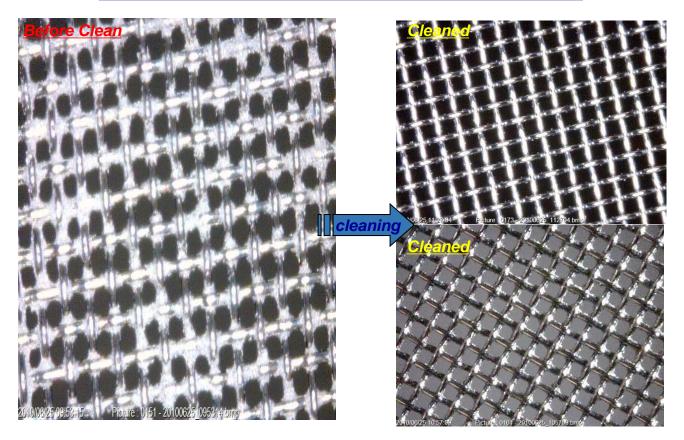

- Easily removed all solder paste residue from the stencil surface while showing no negative effects to the stencil.
- The fine pitch apertures were 100% clean as well as the stencil surface.

Cleaning Process Parameters		
Temperature:	Ambient	
Cleaning Agent:	Homogenous Cleaning Agent	
Concentration:	15%	
Technology:	Ultrasonic	
Time:	2 Minutes	
Drying Process Parameters		
Temperature:	Ambient	
Time:	5 Minutes	
Technology:	Air	

The low operating concentration without decreasing effectiveness or bath life at ambient temperature, provided the cost savings desired by the customer.

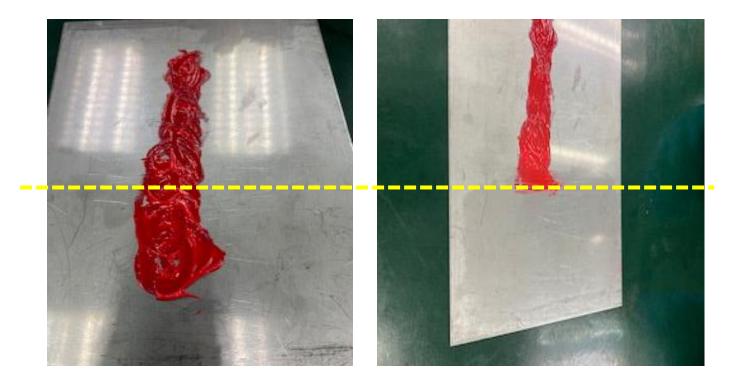
Inspection



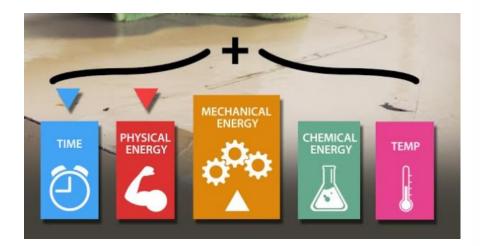

Nano Coat Quick Test

Take a dyne pen or a sharpie.

• If it beads up on the bottom side of the stencil, the nano coating is still present.



Silver Epoxy Before & After Clean Picture on the stencil


Before Curing

In Conclusion

Same Principles apply to all types of stencil cleaning-paste, silver epoxy, adhesives

Simple but Ignored

We can ignore reality, but we cannot ignore the consequences of ignoring reality. *Ayn Rand*

Stencil Cleaning-

A practical approach to improving yields and maximizing your through-put

Q&A Session

Please type questions into the chat

Thank You!

Debbie Carboni, Global Product Line Manager Electronics Debbie_Carboni@kyzen.com

215-498-8856