
Design of Experimentation for Affordability
Affordability is not exactly the primary word which comes to mind when
discussing the use of design of experiments (DOE) principles, but is
generally accepted as a necessary part of the engineering activities
required in the development of a product or process. However, a
number of studies have indicated that the cost savings derived from
a well deliberated experimental design can be substantial in the initial
stages where the conditions or parameters of a process are
determined. Some studies have shown a greater than 50% cost
savings compared to the more conventional means of trial and error
approaches to process development. At ACI Technologies (ACI), we
have found the use of DOE techniques fundamental in eliminating
extraneous costs otherwise spent on unnecessary testing.

Case Study

Recently a project was undertaken at ACI to qualify a surface mount
technology (SMT) process to meet the IPC Class 3 qualifications 
for solder wetting, ionic cleanliness, and visible flux residue. The
contract manufacturer had introduced a new SMT solder process 
that subsequently exhibited electrical failures after production of 
the first articles. The following is an anatomy of the investigation 
and experimental process used to determine the acceptable 
process parameters.

1. Failure Summary

The preliminary investigations that led to this study revealed that the
first articles produced by the contract manufacture had evidence of
the following:

    •   Electrical failure after biased highly accelerated stress test
(HAST) testing due to electromigration causing corrosion.

    •   Unacceptable amounts of voiding in the BGA devices.

    •   Occasionally, severe cases of solder de-wetting on surface pads.

2. Causes - Brainstorming Session

Through this experiment, it was determined that 10 factors (Table 1)
in the SMT process could possibly account for the various failures that

were identified. If two term interactions are taken into consideration,
the amount of experimental runs would exceed 1000; a very costly
and time consuming experiment. When so many combinations and
iterations are involved, it is critical to choose a good software program
that will evaluate the probability of detecting variability on the basis of
the factors and interactions chosen for the experiment. This will allow
you a minimum amount of experimental runs to maintain a statistically
valid experiment. It is important to note that decreasing the number
of experimental runs will decrease your probability of detecting a
response, as you increase the number of factors and interactions.
Therefore, it is important to choose a program that gives you the
flexibility to design an experiment around the interactions and main
effects most likely to affect the process or product quality.

Table 1: Factorial Values.

3. Type of Designs

There are a number of experimental design variations that can be
tailored specifically to the type of data that is required.

A D-Optimal Design (Figure 1A) places the majority of its experimental
runs at the extremes (70-80%), with a few in the center regions. This
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    Factors

    Name                                            Role Values

    Belt Speed                             Continuous 1 3

    Peak Temperature                 Continuous 230 260

    Ramp Rate                             Continuous 5 20

    Cool Rate                                Continuous 1 3

    Paste                                       Categorical X Y

    Surface Finish                        Categorical Tin OSP Gold

    Solder Volume                       Continuous 2 6

    Cleaner Temperature            Continuous 40 75

    Cleaner Concentration         Continuous 5 20

    Cleaner Type                          Categorical Aqueous Semi-Aqueous



model is appropriate for screening designs where a bolder approach
in assigning factorial levels may be warranted. The average variance,
relative to error, would be lower on the extremes, but this model would
be inappropriate for quadratic effects.

The I-Optimal Design (Figure 1B) minimizes the average variance
prediction within the interior regions of the experiment, making it more
appropriate for Response Surface Designs. Most of its runs are located
in the inner regions of the design space, making it better to predict
responses in the inner region.

Figure 1: A shows D-Optimal Design. B depicts I-Optimal Design.

4. Choosing Factorial Values

The number of factors involved in the DOE can be either categorical
or continuous in nature. If conducting a screening experiment, the
continuous variables should be assigned values which represent the
reasonable extremities of the process parameters. It is always easier
to interpolate predictive responses than to extrapolate, where
quadratic or cubic effects are not taken into account.

5. Responses

The three response variables for this experiment were wetting,
cleanliness, and flux residue. The responses were numerically
assigned a number from one through 10, determined through a
combination of visual inspection and ionographic testing. It may be
beneficial at times to assign a numerical value to a categorical
response to obtain the necessary statistical data to determine
variability. In the case of this experiment, a numerical metric was easily
adaptable. The value of one indicated the worst case response, with
the value of 10 indicating the best response. For example, the best
wetting, the cleanest assembly, and the least amount of residue all
had values of 10.

6. Interpreting the Model Data

Assuming a general linear model is used, there are two important
statistical tables to consider. The summary of fit and analysis of
variance (Table 2) will present the statistical relevance of the
experimental model based on the particular response variable and
factors used in the DOE. In this example the wetting response 
was used.

The three key areas to look at are:

    •   F-Ratio 14.693. Which indicates the wetting response produced
a high signal to baseline noise.

    •   Prob <.0001. Which indicates a very strong probability that the
wetting responses were not random in nature.

    •   R-Square adj. In this case, the 0.909 indicates that 90% of all the
variance around the means is accounted for within the model.

Essentially, the model showed a very strong response in wetting for
the assigned factorial values.
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Table 2: Wetting Response.

    Summary of Fit

    RSquare                                                  0.975486

    RSquare Adj                                           0.909096

    Root Mean Square Error                       0.535099

    Mean of Response                                7.268889

    Observation (or Sum Wgts)                               90

    Analysis of Variance

    Source DF                    Sum of Squares                    Mean Square                     F Ratio

    Model 65                        273.46094                            4.20709                        14.6931

    Error 24                           6.87195                               0.28633                        Prob > F

    C. Total 89                        280.33289                                                                    < .0001
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7. Interpreting Factorial Data

Using similar metrics to the model, it was determined that the greatest
wetting response was produced by changing the peak temperature,
followed by the ramp rate. The interaction between Peak Reflow
Temperature and Surface Finish (Figure 2) also had a significant
response. For this customer’s particular assembly, an electroless
nickel immersion gold (ENIG) finish at a higher process temperature
improved wetting to the surface pads.

Figure 2: Surface Finish vs. Peak Temperature.

8. Conclusion

There were other elements to this experiment, but for the purpose of
this article, it suffices to show that with the use of DOE techniques, the
engineers at ACI were able to determine the proper process conditions
for a valued customer. This enabled them to save time and money on
their product development.

ACI conducts training classes on various aspects of DOE, design for
manufacturability (DFM), and statistical process control (SPC). For
more information, please contact the Registrar at 610.362.1295, via
email to registrar@aciusa.org or visit the website at www.aciusa.org.

Carmine Meola
Senior Staff Engineer
ACI Technologies
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