• SMTnet
  • »
  • Technical Library
  • »
  • Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards

Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards

Published:

June 7, 2021

Author:

Leandro H. de S. Silva , Agostinho A. F. Júnior, George O. A. Azevedo, Sergio C. Oliveira and Bruno J. T. Fernandes

Abstract:

The technological growth of the last decades has brought many improvements in daily life, but also concerns on how to deal with electronic waste. Electrical and electronic equipment waste is the fastest-growing rate in the industrialized world. One of the elements of electronic equipment is the printed circuit board (PCB) and almost every electronic equipment has a PCB inside it. While waste PCB (WPCB) recycling may result in the recovery of potentially precious materials and the reuse of some components, it is a challenging task because its composition diversity requires a cautious pre-processing stage to achieve optimal recycling outcomes. Our research focused on proposing a method to evaluate the economic feasibility of recycling integrated circuits (ICs) from WPCB. The proposed method can help decide whether to dismantle a separate WPCB before the physical or mechanical recycling process and consists of estimating the IC area from a WPCB, calculating the IC's weight using surface density, and estimating how much metal can be recovered by recycling those ICs. To estimate the IC area in a WPCB, we used a state-of-the-art object detection deep learning model (YOLO) and the PCB DSLR image dataset to detect the WPCB's ICs. Regarding IC detection, the best result was obtained with the partitioned analysis of each image through a sliding window, thus creating new images of smaller dimensions, reaching 86.77% mAP. As a final result, we estimate that the Deep PCB Dataset has a total of 1079.18 g of ICs, from which it would be possible to recover at least 909.94 g of metals and silicon elements from all WPCBs' ICs. Since there is a high variability in the compositions of WPCBs, it is possible to calculate the gross income for each WPCB and use it as a decision criterion for the type of pre-processing....

  • Download Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards article
  • To read this article you need to have Adobe PDF installed

You must be a registered user to talk back to us.

 
Company Information:

University of Pernambuco

The Federal University of Pernambuco was established in 1946, born out of the Faculty of Law of Olinda (which still exists as a faculty within the university today). The university operates three campuses in the Brazilian ...

Recife, Brazil

School

  • Phone +55 81 3183-3674

University of Pernambuco website

Company Postings:

(1) technical library article

  • Jun 15, 2021 - Dispensing EMI Shielding Materials: An Alternative to Sputtering | Nordson ASYMTEK
  • Feb 20, 2021 - Humitector™ Type 2 Non-Reversible Humidity Indicator Cards from Clariant help assure the integrity of moisture-sensitive surface-mount devices | Clariant Cargo & Device Protection
  • Jan 03, 2021 - Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies | SMTnet
  • Dec 07, 2020 - A Non-destructive Approach to Identify Intermittent Failure Locations on Printed Circuit Cards (PCC) that have been Temperature Cycle Tested | ACI Technologies, Inc.
  • Dec 02, 2020 - SMT007-MIRTEC Intelligent Factory Automation Article-November 2020 | MIRTEC Corp
  • Browse Technical Library »

Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards article has been viewed 87 times

  • SMTnet
  • »
  • Technical Library
  • »
  • Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards
N2 Reflow Oven with CBS ETA

Electronic Equipment Auctions