SMT, PCB Electronics Industry News

Improving Fuel Cell Performance With AI

Nov 27, 2020

Improving Fuel Cell Performance With AI

Fuel cells use clean hydrogen fuel, which can be generated by wind and solar energy, to produce heat and electricity, and lithium-ion batteries, like those found in smartphones, laptops, and electric cars, are a popular type of energy storage. The performance of both is closely related to their micro-structure: how the pores (holes) inside their electrodes are shaped and arranged can affect how much power fuel cells can generate, and how quickly batteries charge and discharge.

However, because the micrometer-scale pores are so small, their specific shapes and sizes can be difficult to study at a high enough resolution to relate them to overall cell performance.

Now, Imperial researchers have applied machine learning techniques to help them explore these pores virtually and run 3D simulations to predict cell performance based on their micro-structure.

The researchers used a novel machine learning technique called “deep convolutional generative adversarial networks” (DC-GANs). These algorithms can learn to generate 3D image data of the micro-structure based on training data obtained from nano-scale imaging performed synchrotrons (a kind of particle accelerator the size of a football stadium).

Lead author Andrea Gayon-Lombardo, of Imperial’s Department of Earth Science and Engineering, said: “Our technique is helping us zoom right in on batteries and cells to see which properties affect overall performance. Developing image-based machine learning techniques like this could unlock new ways of analyzing images at this scale.”

When running 3D simulations to predict cell performance, researchers need a large enough volume of data to be considered statistically representative of the whole cell. It is currently difficult to obtain large volumes of micro-structure image data at the required resolution.

However, the authors found they could train their code to generate either much larger datasets that have all the same properties, or deliberately generate structures that models suggest would result in better-performing batteries.

Project supervisor Dr. Sam Cooper, of Imperial’s Dyson School of Design Engineering, said: “Our team’s findings will help researchers from the energy community to design and manufacture optimized electrodes for improved cell performance. It’s an exciting time for both the energy storage and machine learning communities, so we’re delighted to be exploring the interface of these two disciplines.”

By constraining their algorithm to only produce results that are currently feasible to manufacture, the researchers hope to apply their technique to manufacturing to designing optimized electrodes for next-generation cells.


About Cheersonic

Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive.

The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw material, water and energy usage and provide improved process repeatability, transfer efficiency, high uniformity and reduced emissions.

Cheersonic’s growth strategy is focused on leveraging its innovative technologies, proprietary know-how, unique talent and experience, and global reach to further develop thin film coating technologies that enable better outcomes for its customers’ products and processes. For further information, visit https://www.cheersonic-liquid.cn/en/.

Nov 27, 2020 -

Ultrasonic Spray For Electrode Coating

Nov 27, 2020 -

Does hydrogen energy really work?

Nov 27, 2020 -

Will hydrogen energy vehicles eventually replace lithium batteries?

Nov 24, 2020 -

The ultrasonic spray dryers are targeted for laboratory applications.

Nov 24, 2020 -

Maximizing the use of GDL in the Fuel Cell by ultrasonic spray application

Nov 24, 2020 -

Research on non-precious metal catalysts. Research progress of non-precious metal catalysts for proton exchange membrane fuel cells

Nov 18, 2020 -

Advantages of ultrasonic spraying for photoresist

Nov 17, 2020 -

Ultrasonic Coating System For Fuel Cell Manufacturer

Nov 16, 2020 -

Coating Photoresist Onto MEMS

Jan 21, 2021 -

Vinatronic Purchases New Glenbrook X-Ray Inspection System

Jan 21, 2021 -

World's First Commercially Available Diamond Filled Underfill: SMT 158D8

Jan 21, 2021 -

New Yorker Electronics Introduces CIT Relay & Switch Automotive Relay Series

Jan 21, 2021 -

TTM Technologies, Inc. Earns IPC-1791, Trusted Electronic Designer, Fabricator and Assembler RequirementsQualified Manufacturers Listing (QML)

Jan 21, 2021 -

KYZEN Strengthens Florida Presence with Kurt Whitlock Associates

Jan 21, 2021 -

Seika Machinery Launches Sawa Multi-Purpose Cleaning System

Jan 21, 2021 -

ZESTRON and GEN3 Systems Collaboration

Jan 21, 2021 -

Indium Corporation Introduces New Fast-Wetting, Low-Spatter Flux-Cored Wire for Robotic and Laser Soldering

Jan 21, 2021 -

Altus Adds More Flexible SMT Solutions with the Introduction of Essemtec's Technology

Jan 21, 2021 -

Futurist, Writer and Manufacturing Tech Expert Travis Hessman to Keynote IPC APEX EXPO 2021

See electronics manufacturing industry news »

Improving Fuel Cell Performance With AI news release has been viewed 82 times

Online IPC Training & Certification

PCB Cleaning Training