Full Site - : test instrument (Page 21 of 219)

GAO Comm

Industry Directory | Manufacturer's Representative

GAO Comm is an international leading provider of communication test instruments and equipment and devices that serve the needs of communication infrastructure, installation and maintenance.

GAOComm

Industry Directory | Manufacturer's Representative

About GAO Comm GAO Comm is an international leading provider of communication test instruments and equipment and devices that serve the needs of communication infrastructure, installation and maintenance.

GAO Comm

Industry Directory | Manufacturer's Representative

GAO Comm is an international leading provider of communication test instruments and equipment and devices that serve the need

Nelson Publishing, Inc.

Industry Directory | Manufacturer's Representative

Serving management & engineering professionals in the electronics test & evaluation market

complus systems

Industry Directory |

EMI / EMC, Seismic Instruments, Interference, Testing Systems

Creating Reusable Manufacturing Tests for High-Speed I/O with Synthetic Instruments

Technical Library | 2020-07-08 20:05:59.0

There is a compelling need for functional testing of high-speed input/output signals on circuit boards ranging from 1 gigabit per second (Gbps) to several hundred Gbps. While manufacturing tests such as Automatic Optical Inspection (AOI) and In-Circuit Test (ICT) are useful in identifying catastrophic defects, most high-speed signals require more scrutiny for failure modes that arise due to high-speed conditions, such as jitter. Functional ATE is seldom fast enough to measure high-speed signals and interpret results automatically. Additionally, to measure these adverse effects it is necessary to have the tester connections very close to the unit under test (UUT) as lead wires connecting the instruments can distort the signal. The solution we describe here involves the use of a field programmable gate array (FPGA) to implement the test instrument called a synthetic instrument (SI). SIs can be designed using VHDL or Verilog descriptions and "synthesized" into an FPGA. A variety of general-purpose instruments, such as signal generators, voltmeters, waveform analyzers can thus be synthesized, but the FPGA approach need not be limited to instruments with traditional instrument equivalents. Rather, more complex and peculiar test functions that pertain to high-speed I/O applications, such as bit error rate tests, SerDes tests, even USB 3.0 (running at 5 Gbps) protocol tests can be programmed and synthesized within an FPGA. By using specific-purpose test mechanisms for high-speed I/O the test engineer can reduce test development time. The synthetic instruments as well as the tests themselves can find applications in several UUTs. In some cases, the same test can be reused without any alteration. For example, a USB 3.0 bus is ubiquitous, and a test aimed at fault detection and diagnoses can be used as part of the test of any UUT that uses this bus. Additionally, parts of the test set may be reused for testing another high-speed I/O. It is reasonable to utilize some of the test routines used in a USB 3.0 test, in the development of a USB 3.1 (running at 10 Gbps), even if the latter has substantial differences in protocol. Many of the SI developed for one protocol can be reused as is, while other SIs may need to undergo modifications before reuse. The modifications will likely take less time and effort than starting from scratch. This paper illustrates an example of high-speed I/O testing, generalizes failure modes that are likely to occur in high-speed I/O, and offers a strategy for testing them with SIs within FPGAs. This strategy offers several advantages besides reusability, including tester proximity to the UUT, test modularization, standardization approaching an ATE-agnostic test development process, overcoming physical limitations of general-purpose test instruments, and utilization of specific-purpose test instruments. Additionally, test instrument obsolescence can be overcome by upgrading to ever-faster and larger FPGAs without losing any previously developed design effort. With SIs and tests scalable and upward compatible, the test engineer need not start test development for high-speed I/O from scratch, which will substantially reduce time and effort.

A.T.E. Solutions, Inc.

Shen Zhen Hui Yi Miao Electronics Technology CO.,LTD

Industry Directory | Manufacturer

TesData is a dedicated to r&d, design, sales of industrial test instrument and provides the intelligent test system solution of hightech enterprises, We have set up a joint technology innovation m

Universal Instruments GSM NCC8 Head

Parts & Supplies | Pick and Place/Feeders

Fully reconditioned and tested Universal Instruments corporation GSM NCC8 head with on the fy vision.

Pace SMS

Guangdong Zhengye Technology Co.,Ltd

Industry Directory | Consultant / Service Provider

Hello.We are professional in the PCB manufacture field for 15 years to service the biggest market China.Our products contained consumable materials.precision testing instruments & Equipments and machine. most of them them are our personal brand ASIDA .And we are the frist class agent for the OXFORD instruments in CHINA . I had noted you company also good in the PCB instruments and machine creatin

Berkeley Nucleonics Corporation

Industry Directory | Manufacturer

BNC is a leading manufacturer of precision electronic instrumentation for test, measurement, and nuclear research.


test instrument searches for Companies, Equipment, Machines, Suppliers & Information