Technical Library: .5mm pitch bga (Page 1 of 2)

BGA Rework. A Comparative Study of Selective Solder Paste Deposition For Area Array Packages

Technical Library | 2007-02-01 09:57:15.0

The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture.

BEST Inc.

Selective Solder Paste Deposition Reliability Test Results.

Technical Library | 2007-06-21 17:03:16.0

The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture (...) While there have been several studies comparing these two attachment methods, this study highlights the effect of rework technique on the electrical characteristics and reliability of reworked BGAs.

BEST Inc.

Step Stencil design when 01005 and 0.3mm pitch uBGA's coexist with RF Shields

Technical Library | 2023-07-25 16:50:02.0

Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.

Photo Stencil LLC

Drop Impact Reliability of Edge-bonded Lead-free Chipscale Packages

Technical Library | 2010-03-30 21:51:23.0

This paper presents the drop test reliability results for edge-bonded 0.5mm pitch lead-free chip scale packages (CSPs) on a standard JEDEC drop reliability test board.

Flex (Flextronics International)

Lead-free and Tin-lead Assembly and Reliability of Fine-pitch Wafer-Level CSPs

Technical Library | 2007-05-31 19:05:55.0

This paper discusses solder paste printing and flux dipping assembly processes for 0.4 and 0.5mm pitch lead-free WLCSPs and the corresponding assembly results and thermal cyclic reliability obtained. Variables evaluated include reflow ambient, paste type, and stencil design. Reliability is also compared to results for the same components assembled under identical conditions using SnPb solder.

Universal Instruments Corporation

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

Assembly And Reliability Issues Associated With Leadless Chip Scale Packages

Technical Library | 2006-10-02 14:26:47.0

This paper addresses the assembly and reliability of 0.5 mm pitch leadless Chip Scale Packages (CSP) on .062" immersion Ag plated printed circuit boards (PCB) using Pb-free solder paste. Four different leadless CSP designs were studied and each was evaluated using multiple PCB attachment pad designs.

Universal Instruments Corporation

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

Assembly and Reliability of 1704 I/O FCBGA and FPBGAs

Technical Library | 2013-03-14 17:19:28.0

Commercial-off-the-shelf ball/column grid array packaging (COTS BGA/CGA) technologies in high reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronic packages. This talk briefly discusses an overview of packaging trends for area array packages from wire bond to flip-chip ball grid array (FCBGA) as well as column grid array (CGA). It then presents test data including manufacturing and assembly board-level reliability for FCBGA packages with 1704 I/Os and 1-mm pitch, fine pitch BGA (FPBGA) with 432 I/Os and 0.4-mm pitch, and PBGA with 676 I/Os and 1.0-mm pitch packages. First published in the 2012 IPC APEX EXPO technical conference proceedings.

Jet Propulsion Laboratory

Mixed Metals Impact on Reliability

Technical Library | 2013-12-19 16:57:50.0

With the adoption of RoHS and implementation of Lead Free solders a major concern is how this will impact reliability. Both commercial and military hardware are impacted by this change even though military hardware is considered exempt from the requirements of RoHS. As the supply chain has moved to the new lead free alloys both markets are being forced to understand these impacts and form risk mitigation strategies to deal with the change. This paper documents the effect of mixing Leaded and Lead Free alloys on BGA devices and how this impacts reliability. Three of the most common pitch BGA packages are included in the study to determine if the risk is the same as pitches decrease

Nextek

  1 2 Next

.5mm pitch bga searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

Training online, at your facility, or at one of our worldwide training centers"
Solder Paste Dispensing

High Throughput Reflow Oven
High Throughput Reflow Oven

High Resolution Fast Speed Industrial Cameras.
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
Hot selling SMT spare parts and professional SMT machine solutions

Thermal Transfer Materials.