Technical Library: 0.8 (Page 1 of 1)

The Great SAC Debate: Comparing The Reliability Of SAC305 And SAC405 Solders In A Variety Of Applications

Technical Library | 2021-09-08 14:23:27.0

Although the electronics industry has largely settled on the use of SAC alloys for the assembly of the majority of lead free products, debate continues to exist over which SAC alloy – SAC305 (Sn3.0Ag0.5Cu) or SAC405 (Sn3.8Ag0.8Cu) – to use. The North American industry generally favours SAC405, while the Asian industry favours SAC305. SAC305 has the significant benefit of being less expensive than SAC405 owing to its lower silver content. However, there are lingering questions about whether the reliability of SAC305 is comparable to that of SAC405. Recent studies have concluded that no significant difference exists, but many potential applications were not studied. This paper compares the results of reliability testing of SAC305 and SAC405 in three different cases on a test vehicle representative of a mid-complexity server-type product which included a range of component types from CBGAs to discrete resistors.

Celestica Corporation

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

  1  

0.8 searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Solder Paste Dispensing

We offer SMT Nozzles, feeders and spare parts globally. Find out more
High Throughput Reflow Oven

High Precision Fluid Dispensers
PCB Depanelizers

"Heller Korea"