Technical Library | 2023-05-02 19:06:43.0
As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.
Technical Library | 2013-03-12 13:25:18.0
High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils
Technical Library | 2020-12-10 15:49:40.0
Electronic assemblies should have longer and longer service life. Today there are partially demanded 20 years of functional capability for electronics for automotive application. On the other hand, smaller components, such as resistors of size 0201, are able to endure an increasing number of thermal cycles until fail of solder joints, so these are tested sometimes up to 4000 cycles. But testing until the end of life is essential for the determination of failure rates and the prognosis of reliability. Such tests require a lot of time, but this is often not available in developing of new modules. A further acceleration by higher cycle temperatures is usually not possible, because the materials are already operated at the upper limit of the load. However, the duration can be shortened by the use of liquids for passive tests, which allow faster temperature changes and shorter dwell times because of better heat transfer compared to air. The question is whether such tests lead to comparable results and what failure mechanisms are becoming effective. The same goes for active temperature cycles, in which the components itself are heated from inside and the substrate remains comparatively cold. This paper describes the various accelerated temperature cycling tests, compares and evaluates the related degradation of solder joints.
Technical Library | 2019-04-18 21:53:04.0
IPX9K Rain Spray Test Chamber(high Pressure high temperature water jet) simulates the use of pressure washer steam cleaning onto the enclosure, It is recognised as the harshest of all ingress protection tests. However the requirement is becoming more prevalent across many industries. Test method for IPX9K : Make sure the water temperature inside the water tank +80°C, water flow rate with 14L-16L per min, water pressure: 8000 Kpa -10000 Kpa (80–100 bar) at distance of 100mm~ 150mm, The test duration is 30 seconds in each of 4 angles, total spray testing time is 2 minutes. IPX9 rain test chamber applicable standards: IEC 60529 – Degrees of protection provided by enclosures (IP Code).Here is working principle in picture.
Technical Library | 2016-11-10 17:37:35.0
The demand for compute capability is growing rapidly fueling the ever rising consumption of power by data centers the worldwide. This growth in power consumption presents a challenge to data center total cost of ownership. Free-air cooling is one of the industrial trends in reducing power consumption, the power usage effectiveness (PUE) ratio, and the total cost of ownership (TCO). Free-air cooling is a viable approach in many parts of the world where the air is reasonably clean. In Eastern China, the poor quality of air, high in particle and gaseous contamination, is a major obstacle to free-air cooling. Servers exposed to outside air blowing in to data centers will corrode and fail at high rate. The poor reliability of hardware increase TCO dramatically. This paper describes a corrosion resistant server design suitable for reliable operation in a free-air cooling data center located in Eastern China where the indoor air quality can be as poor as ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) severity level G3. An accelerated corrosion test method of verifying hardware reliability in the ASHRAE severity level G3 environment is also described.
Technical Library | 2019-05-08 01:46:32.0
IPX9K Rain Spray Test Chamber(high Pressure high temperature water jet) simulates the use of pressure washer steam cleaning onto the enclosure, It is recognised as the harshest of all ingress protection tests. However the requirement is becoming more prevalent across many industries. Test method for IPX9K : Make sure the water temperature inside the water tank +80°C, water flow rate with 14L-16L per min, water pressure: 8000 Kpa -10000 Kpa (80–100 bar) at distance of 100mm~ 150mm, The test duration is 30 seconds in each of 4 angles, total spray testing time is 2 minutes. IPX9K rain test chamber applicable standards: IEC 60529 – Degrees of protection provided by enclosures (IP Code).Here is working principle in picture. Application: It is mainly suitable for testing the performance of shell and seal of electrical and electronic parts, automobile parts and seals under the condition of dripping rain to prevent Rain Water from permeating or working after drizzling.
1 |