Technical Library: 0603 and paper (Page 7 of 10)

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Characterization, Prevention and Removal of Particulate Matter on Printed Circuit Boards

Technical Library | 2016-12-22 16:44:04.0

Particulate matter contamination is known to become wet and therefore ionically conductive and corrosive if the humidity in the environment rises above the deliquescence relative humidity (DRH) of the particulate matter. In wet condition, particulate matter can electrically bridge closely spaced features on printed circuit boards (PCBs), leading to their electrical failure. (...) The objective of this paper is to develop and describe a practical, routine means of measuring the DRH of minute quantities of particulate matter (1 mg or less) found on PCBs.

IBM Corporation

Automatic Visual Inspection of Printed Circuit Board for Defect Detection and Classification

Technical Library | 2021-04-15 14:39:41.0

Inspection of printed circuit board (PCB) has been a crucial process in the electronic manufacturing industry to guarantee product quality & reliability, cut manufacturing cost and to increase production. The PCB inspection involves detection of defects in the PCB and classification of those defects in order to identify the roots of defects. In this paper, all 14 types of defects are detected and are classified in all possible classes ...

S. V. National Institute of Technology

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2007-03-08 19:31:10.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force.

Henkel Electronic Materials

Advanced Technologies for Industry – Product Watch Flexible and printed electronics

Technical Library | 2021-07-13 19:51:10.0

Flexible electronics refers to a class of lightweight, flexible and electronic sensing components and electronic devices built on stretchable substrates1 that are used (and can be used) for a broad set of products and applications such as displays and sensors. The most prominent characteristic is that they can bend in contrast to electronic systems built in rigid materials. They are manufactured on flexible plastic substrates, such as polyamide, PEEK2 or transparent conductive polyester films3, or other materials such as paper, textile, or thin glass. The term flexible also refers to the roll-to-roll manufacturing process.

European Commission - Executive Agency for Small and Medium-sized Enterprises (EASME)

Manufacture and Characterization of a Novel Flip-Chip Package Z-interconnect Stack-up with RF Structures

Technical Library | 2008-02-26 15:02:19.0

More and more chip packages need multi-GHz RF structures to meet their performance targets. The ideal chip package needs to combine RF features with Digital features for these applications. They drive low-loss, controlled impedance transmission lines, flexibility in assigned signal and power layers, and clearances of various shapes in power layers. Building these features in a chip package is difficult without making the stack-up very thick or compromising the reliability of the product. In the present paper, we have designed and built a flip-chip package test vehicle (TV) to make new RF structures, using Z-axis interconnection (Zinterconnect) building blocks.

i3 Electronics

Defect Features Detected by Acoustic Emission for Flip-Chip CGA/FCBGA/PBGA/FPBGA Packages and Assemblies

Technical Library | 2017-06-22 17:11:53.0

C-mode scanning acoustic microscopy (C-SAM) is a non-destructive inspection technique showing the internal features of a specimen by ultrasound. The C-SAM is the preferred method for finding “air gaps” such as delamination, cracks, voids, and porosity. This paper presents evaluations performed on various advanced packages/assemblies especially flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. For comparison, representative x-ray images of the assemblies were also gathered to show key defect detection features of the two non-destructive techniques.

Jet Propulsion Laboratory

Board-Level Thermal Cycling and Drop-Test Reliability of Large, Ultrathin Glass BGA Packages for Smart Mobile Applications

Technical Library | 2018-08-22 14:05:42.0

Glass substrates are emerging as a key alternative to silicon and conventional organic substrates for high-density and high-performance systems due to their outstanding dimensional stability, enabling sub-5-µm lithographic design rules, excellent electrical performance, and unique mechanical properties, key in achieving board-level reliability at body sizes larger than 15 × 15 mm2. This paper describes the first demonstration of the board-level reliability of such large, ultrathin glass ball grid array (BGA) packages directly mounted onto a system board, considering both their thermal cycling and drop-test performances.

Institute of Electrical and Electronics Engineers (IEEE)

Comparison of ROSE, C3/IC, and SIR as an effective cleanliness verification test for post soldered PCBA

Technical Library | 2023-04-17 21:17:59.0

The purpose of this paper is to evaluate and compare the effectiveness and sensitivity of different cleanliness verification tests for post soldered printed circuit board assemblies (PCBAs) to provide an understanding of current industry practice for ionic contamination detection limits. Design/methodology/approach – PCBAs were subjected to different flux residue cleaning dwell times and cleanliness levels were verified with resistivity of solvent extract, critical cleanliness control (C3) test, and ion chromatography analyses to provide results capable of differentiating different sensitivity levels for each test. Findings – This study provides an understanding of current industry practice for ionic contamination detection using verification tests with different detection sensitivity levels. Some of the available cleanliness monitoring systems, particularly at critical areas of circuitry that are prone to product failure and residue entrapment, may have been overlooked. Research limitations/implications – Only Sn/Pb, clean type flux residue was evaluated. Thus, the current study was not an all encompassing project that is representative of other chemistry-based flux residues. Practical implications – The paper provides a reference that can be used to determine the most suitable and effective verification test for the detection of ionic contamination on PCBAs. Originality/value – Flux residue-related problems have long existed in the industry. The findings presented in this paper give a basic understanding to PCBA manufacturers when they are trying to choose the most suitable and effective verification test for the detection of ionic contamination on their products. Hence, the negative impact of flux residue on the respective product's long-term reliability and performance can be minimized and monitored effectively.

Jabil Circuit, Inc.

The Effect of Coating and Potting on the Reliability of QFN Devices.

Technical Library | 2014-08-28 17:09:23.0

The fastest growing package types in the electronics industry today are Bottom Termination Components (BTCs). While the advantages of BTCs are well documented, they pose significant reliability challenges to users. One of the most common drivers for reliability failures is the inappropriate adoption of new technologies. This is especially true for new component packaging like BTCs. Obtaining relevant information can be difficult since information is often segmented and the focus is on design opportunities not on reliability risks (...)Commonly used conformal coating and potting processes have resulted in shortened fatigue life under thermal cycling conditions. Why do conformal coating and potting reduce fatigue life? This paper details work undertaken to understand the mechanisms underlying this reduction. Verification and determination of mechanical properties of some common materials are performed and highlighted. Recommendations for material selection and housing design are also given.

DfR Solutions


0603 and paper searches for Companies, Equipment, Machines, Suppliers & Information