Technical Library: 0603 solder preform (Page 1 of 1)

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

Optimizing Reflowed Solder TIM (sTIMs) Processes for Emerging Heterogeneous Integrated Packages

Technical Library | 2023-01-17 17:12:33.0

Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.

Heller Industries Inc.

Minimizing Voiding In QFN Packages Using Solder Preforms

Technical Library | 2012-07-27 11:18:29.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. The focus of this paper will quantify the preform requirements and process adjustments needed to use preforms in a standard SMT process. In addition, experimental data showing vo

Indium Corporation

Solder Preform Basics

Technical Library | 2009-12-14 20:27:54.0

Solder paste is the most recognized form of solder used in electronics assembly today. A surface mount application depends on solder paste to attach the components to the circuit board. However, solder paste may not be the only solution. This is especially true when working with through-hole components or very large devices that require more solder than can be supplied by printed solder paste. In fact, quite often a PCB involves mixed technology that requires more than one form of solder. Solder paste is used for the surface mount components and solder preforms are utilized to attach the leads on through-hole components, avoiding wave or selective soldering.

Indium Corporation

Novel Approach to Void Reduction Using Microflux Coated Solder Preforms for QFN/BTC Packages that Generate Heat

Technical Library | 2019-08-07 22:56:45.0

The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.

Alpha Assembly Solutions

Study on the Reliability of Sn–Bi Composite Solder Pastes with Thermosetting Epoxy under Thermal Cycling and Humidity Treatment

Technical Library | 2021-08-25 16:28:36.0

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 #14;C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from

Nanjing University

  1  

0603 solder preform searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

High Precision Fluid Dispensers
Gordon Brothers October 2-30, 2024 Auction

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
PCB Handling with CE

Smt Feeder repair service centers in Europe, North, South America
IPC Training & Certification - Blackfox

Reflow Soldering 101 Training Course
best pcb reflow oven

Stencil Printing 101 Training Course
Hot selling SMT spare parts and professional SMT machine solutions

Thermal Transfer Materials.