Technical Library: 19

Dross and the Selective Soldering Process

Technical Library | 2011-02-24 19:20:14.0

In the selective soldering process, dross can be detrimental. Dross (and I use this term to encompass all surface contamination) is created in conjunction with the presence of Oxygen in two different areas of the process, and by separate means. Each must

SELECT Products | Nordson Electronics Solutions

How Clean Is Clean?

Technical Library | 2009-03-19 20:23:54.0

Over the past several years, post-reflow defluxing of circuit assemblies has gained in popularity. Microminiaturization of components and boards, combined with higher expected reliability and increased product liability, have contributed to the prominence of defluxing. Lead-free solder paste - with its higher reflow temperatures and negative effects on flux - increase the likelihood of post-reflow defluxing to increase a product's reliability and aesthetic appearance.

Aqueous Technologies Corporation

Making Ovens Smarter

Technical Library | 2016-09-19 20:26:36.0

This white paper seeks to set out the value of a ‘smarter’ approach to the reflow process and how a more intelligent oven can offer real added value and performance to the entire line. It also lays out some of the criteria that is important when selecting smart equipment for a smart process, that conforms to, and is ready for, IoM or Industry 4.0

KIC Thermal

What is an analog signature analyzer and how does it work?

Technical Library | 2020-11-19 20:35:26.0

Simultaneously with the first complex electronic circuits, the task of creating effective means of diagnosing and repairing them appeared. In previous decades, specialized programmable stands were used for diagnostics of serial electronic products, as well as various testers and probes for troubleshooting during their operation. But the dramatic increase in the density / cost factor, in parallel with the very rapid modification of electronic products, made programmable stands economically ineffective even in mass production. The use of traditional laboratory equipment (oscilloscopes, multimeters, etc.) requires power supply to the defective modules, which is often impossible and unsafe, since it can lead to failure of the working modules of the module. In addition, the use of this equipment requires documentation and highly qualified personnel. More automated and sophisticated signature analysis systems came to the rescue in solving this problem. A feature of these devices is that they allow you to test digital and analog assemblies without dismantling components and without supplying voltage.

Engineering Physics Center of MSU

Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene

Technical Library | 2015-03-19 20:33:34.0

Silicon is arguably the best electronic material, but it is not a good optoelectronic material. By employing first-principles calculations and the cluster-expansion approach, we discover that hydrogenated bilayer silicene (BS) shows promising potential as a new kind of optoelectronic material. Most significantly, hydrogenation converts the intrinsic BS, a strongly indirect semiconductor, into a direct-gap semiconductor with a widely tunable band gap. At low hydrogen concentrations, four ground states of single- and double sided hydrogenated BS are characterized by dipole-allowed direct (or quasidirect) band gaps in the desirable range from 1 to 1.5 eV, suitable for solar applications. At high hydrogen concentrations, three well-ordered double-sided hydrogenated BS structures exhibit direct (or quasidirect) band gaps in the color range of red, green, and blue, affording white light-emitting diodes. Our findings open opportunities to search for new silicon-based light-absorption and light-emitting materials for earth-abundant, high efficiency, optoelectronic applications.Originally published by the American Physical Society

Oak Ridge National Laboratory

  1  

19,20 searches for Companies, Equipment, Machines, Suppliers & Information