Technical Library: 2.juki circuit board (Page 21 of 31)

WHY CLEAN A NO-CLEAN FLUX

Technical Library | 2020-11-04 17:57:41.0

Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.

KYZEN Corporation

Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics

Technical Library | 2021-05-13 16:03:25.0

Sn-based lead-free solders such as Sn-Ag-Cu, Sn-Cu, and Sn-Bi have been used extensively for a long time in the electronic packaging field. Recently, low-temperature Sn-Bi solder alloys attract much attention from industries for flexible printed circuit board (FPCB) applications. Low melting temperatures of Sn-Bi solders avoid warpage wherein printed circuit board and electronic parts deform or deviate from the initial state due to their thermal mismatch during soldering. However, the addition of alloying elements and nanoparticles Sn-Bi solders improves the melting temperature, wettability, microstructure, and mechanical properties. Improving the brittleness of the eutecticSn-58wt%Bi solder alloy by grain refinement of the Bi-phase becomes a hot topic. In this paper, literature studies about melting temperature, microstructure, inter-metallic thickness, and mechanical properties of Sn-Bi solder alloys upon alloying and nanoparticle addition are reviewed

University of Seoul

Recurrent Neural Network-Based Stencil Cleaning Cycle Predictive Modeling

Technical Library | 2023-06-12 18:33:29.0

This paper presents a real-time predictive approach to improve solder paste stencil printing cycle decision making process in surface mount assembly lines. Stencil cleaning is a critical process that influences the quality and efficiency of printing circuit board. Stencil cleaning operation depends on various process variables, such as printing speed, printing pressure, and aperture shape. The objective of this research is to help efficiently decide stencil printing cleaning cycle by applying data-driven predictive methods. To predict the printed circuit board quality level, a recurrent neural network (RNN) is applied to obtain the printing performance for the different cleaning aging. In the prediction model, not only the previous printing performance statuses are included, but also the printing settings are used to enhance the RNN learning. The model is tested using data collected from an actual solder paste stencil printing line. Based on the predicted printing performance level, the model can help automatically identify the possible cleaning cycle in practice. The results indicate that the proposed model architecture can predictively provide accurate solder paste printing process information to decision makers and increase the quality of the stencil printing process.

Binghamton University

Lead-Free Solder Wafer Bumping

Technical Library | 2007-12-06 11:37:15.0

Over the past 30 years we have learned that lead has negative affects on the health of humans and seen strong legislation remove it from gasoline and paints. More recently, governments in Europe and Asia have set deadlines to remove lead from consumer electronic devices that use printed circuit boards. Currently, the ban is not being applied to high reliability applications such as military or medical devices, but we all know that will come someday soon. Likewise many believe that lead free solder is coming to wafer bump reflow and are beginning to make the transition.

BTU International

Solder Preform Basics

Technical Library | 2009-12-14 20:27:54.0

Solder paste is the most recognized form of solder used in electronics assembly today. A surface mount application depends on solder paste to attach the components to the circuit board. However, solder paste may not be the only solution. This is especially true when working with through-hole components or very large devices that require more solder than can be supplied by printed solder paste. In fact, quite often a PCB involves mixed technology that requires more than one form of solder. Solder paste is used for the surface mount components and solder preforms are utilized to attach the leads on through-hole components, avoiding wave or selective soldering.

Indium Corporation

Process Issues For Fine Pitch CSP Rework and Scavenging

Technical Library | 2013-03-04 16:51:00.0

Chip-scale (or chip-size) packages are rapidly becoming an important element in electronics due to their size, performance, and cost advantages [Hou, 1998]. The Chip Scale Package (CSP) is becoming a key semiconductor package type, particularly for consumer products. Due to their relatively smaller size, new challenges are presented in the rework and repair of CSPs. (...) The specific focus of this paper is the removal process for rework of CSPs and the site scavenging methods required to properly prepare the circuit board for a new component. Process factors such as the heating, fluxing and, atmosphere are discussed.

Universal Instruments Corporation

Reduce labor by automating your Selective Conformal Coating process

Technical Library | 2015-06-22 18:31:52.0

Applying conformal coatings to electronics has come a long way since the days of manually coating circuit boards. The extreme accuracy and highly repetitive process of automated conformal coatings is moving the electronics industry towards a more defect-free era for conformal coating. It enables new forms of electronics to become better protected, making it possible for electronics to withstand harsher environments than ever before. The following article is meant to aid in clarifying the advantages of specialty coating systems over manual applications for selective conformal coating.

ETS - Energy Technology Systems, Inc.

SELECT CONFORMAL COAT FORMULATION FOR PCB ENVIRONMENT

Technical Library | 2015-08-20 15:51:08.0

Temperature and Humidity on Selective Conformal Coating It is well known that selective conformal coating on printed circuit board (PCB) assemblies provides unparallel protection for PCB’s. Nevertheless, concentrated conditions of humidity, water, and high temperatures can have negative effects on the conformal coating itself causing it to fail and become inapt for its intended purpose. Taking this into consideration, it is prudent to choose the right type of conformal coating that best suits the application and environmental conditions under which an assembly is likely to undergo in use. The proper conformal coating will significantly reduce the likelihood of failure/rejection, saving both valuable time and money for any manufacturing process.

ETS - Energy Technology Systems, Inc.

The PCB Used In Marine Industry Paving Way For Innovations

Technical Library | 2016-08-02 06:10:56.0

As the technology has become a universal key to major developments, the marine and boat industry has shown elevated growth in recent time. The marine market circumscribes on the electronic and design solutions for every single innovation. All the developments in Marine sector has and are heading towards a notion of modernization and among these, printed circuit board is grounding the research and developments. How to increase the efficiency of the device? How to gain optimum fuel efficiency? Does the dual fuel concept become a buzz word for major innovations? These are the basic questions which are considered to bring new novelties in the market.

Technotronix

Risk Mitigation in Hand Soldering

Technical Library | 2019-01-02 21:51:49.0

Failed solder joints remain a constant source of printed circuit board failure. Soldering is the bonding of metallic surfaces via an intermetallic compound (IMC). The interaction between thermal energy delivery, flux chemistry, and solder chemistry creates the solder bond or joint. Today, reliability relies on visual inspection; operator experience and skill, control of influencers e.g. tip geometry, tip temperature, and collection and analysis of process data. Each factor involved with the formation of the solder joint is an element of risk and can affect either throughput or repeatability. Mitigating this risk in hand soldering requires the identification of these factors and a means to address them.

Metcal


2.juki circuit board searches for Companies, Equipment, Machines, Suppliers & Information

Midwest Circuit Technology
Midwest Circuit Technology

Midwest Circuit Technology provides Carbide Router Bits and End Milling Cuters for use in PCB Depaneling equipment. We have over 35 years of supplying tools and machining experience in drilling, Routing, Test Fixture manufacture.

Manufacturer / Distributor

114 Barrington Town Square
Aurora, OH USA

Phone: 13309956900

Global manufacturing solutions provider

High Precision Fluid Dispensers
Blackfox IPC Training & Certification

Wave Soldering 101 Training Course
SMT feeders

Best Reflow Oven
High Throughput Reflow Oven

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
PCB Depanelizers

Low-cost, self-paced, online training on electronics manufacturing fundamentals