Technical Library | 2012-12-27 14:35:29.0
Printed Electronics is generally defined as the patterning of electronic materials, in solution form, onto flexible substrates, omitting any use of the photolithography, etching, and plating steps commonly found within the Printed Circuit Board (PCB) industry. The origins of printed electronics go back to the 1960s, and close variants of several original applications and market segments remain active today. Through the 1980s and 1990s Printed Electronic applications based on Membrane Touch Switch and Electroluminescent lighting technologies became common, and the screen printed electronic materials used then have formed the building blocks for many of the current and emerging technologies and applications... First published in the 2012 IPC APEX EXPO technical conference proceedings.
Technical Library | 2012-11-12 14:06:48.0
With consumers constantly looking for lower prices on their technology products and manufacturers trying to squeak out higher margins from their production lines, the need for process control and lower overhead costs have become even more important. One sector that is often overlooked is the hand soldering area of the factory. Many factories have been struggling with antiquated soldering systems for years. In some cases they are trying to make their investment in stations last much longer than they were designed for, or they are falsely trying to recoup their original investment ‐ all at the cost of higher operating expenses or even worse, reduced operator thru‐put.
Technical Library | 2013-02-14 12:54:29.0
Boundary-scan (1149.1) technology was originally developed to provide a far easier method to perform digital DC testing to detect intra-IC interconnect assembly faults, such as solder shorts and opens. Today's advanced IC technology now includes high-speed differential interfaces that include AC or DC coupling components loaded on the printed circuit assembly. Simple stuck-at-high/low test methods are not sufficient to detect all assembly fault conditions, which includes shorts, opens and missing components. Improved diagnostics requires detailed circuit analysis, predictive assembly fault simulation and more complex testing to isolate and accurately detect all possible assembly faults... First published in the 2012 IPC APEX EXPO technical conference proceedings
1 |