Technical Library: 20a and excel (Page 1 of 1)

An Overview of Advanced Failure Analysis Techniques for Pentium® and Pentium® Pro Microprocessors

Technical Library | 1999-05-07 08:55:49.0

Failure analysis (FA) is one of the key competencies in Intel. It enables very rapid achievement of world class manufacturing standards, resulting in excellent microprocessor time-to-market performance. This paper discusses the evolution of FA techniques from one generation of microprocessors to another.

Intel Corporation

Focus on temperature and customized sensors

Technical Library | 2016-10-24 14:59:03.0

Temperature measurement is one of the most important physical parameters when determining quality, accuracy and reliability of processes not only in industrial use, but also in almost all human activities. Temperature sensors are produced with different technologies to fit specific application requirements. IST AG has concentrated one part of the development and manufacturing on high-end thin-film temperature sensors. This know-how is partially derived from the semiconductor industry and allows us to manufacture sensors with high accuracy, excellent long-term stability, high reliability and repeatability within a wide temperature range from -200 °C up to 1000 °C. Because of very small dimensions and low thermal mass, the thin-film temperature sensors exhibit a very short response time.

Innovative Sensor Technology, USA Division

Coat-and-Print Patterning of Silver Nanowires for Flexible and Transparent Electronics

Technical Library | 2020-02-19 23:12:55.0

Silver nanowires (Ag NWs) possess excellent optoelectronic properties, which have led to many technology-focused applications of transparent and flexible electronics. Many of these applications require patterning of Ag NWs into desired shapes, for which mask-based and printing-based techniques have been developed and widely used. However, there are still several limitations associated to these techniques. These limitations, such as complicated patterning procedures, limited patterning area, and compromised optical transparency, hamper the efficient fabrication of high-performance Ag NW patterns. Here, we propose a coat-and-print approach for effectively patterning Ag NWs.

Integrated Microwave Packaging Antennas and Circuits Technology (IMPACT) Lab

1Click SMT Made Successful Installation and Training For Thai Customer!

Technical Library | 2020-04-01 05:52:59.0

Recently, our engineer Peter went to Thailand to provide after-sales support for our customer. In these days, we had installed a SC-900 selective coating line . Moreover, Peter gave patience and meticulous training to their staff, make sure they master the machine usage .Customer and agent are satisfied with our support and give their affirmation to us. SC-900 is a high Performance 4 axis Selective Coating Machine ,which is equipped with high precision servo control system , various valves , CCD system ,material tank weight detecting system etc, which can provide a high efficiency conformal coating process .The maximum coating size can reach 400mm*450mm with SC-900. So far, we've installed several dozen conformal coating line all over the world. It have excellent stability and performance. Check below link to get more info!

1 CLICK SMT TECHNOLOGY CO., Limited

Additive Manufacturing for Next Generation Microwave Electronics and Antennas

Technical Library | 2020-08-13 00:59:03.0

The paper will discuss the integration of 3D printing and inkjet printing fabrication technologies for microwave and millimeter-wave applications. With the recent advancements in 3D and inkjet printing technology, achieving resolution down to 50 um, it is feasible to fabricate electronic components and antennas operating in the millimeter-wave regime. The nature of additive manufacturing allows designers to create custom components and devices for specialized applications and provides an excellent and inexpensive way of prototyping electronic designs. The combination of multiple printable materials enables the vertical integration of conductive, dielectric, and semi-conductive materials which are the fundamental components of passive and active circuit elements such as inductors, capacitors, diodes, and transistors. Also, the on-demand manner of printing can eliminate the use of subtractive fabrication processes, which are necessary for conventional microfabrication processes such as photolithography, and drastically reduce the cost and material waste of fabrication.

Georgia Institute of Technology

Board-Level Thermal Cycling and Drop-Test Reliability of Large, Ultrathin Glass BGA Packages for Smart Mobile Applications

Technical Library | 2018-08-22 14:05:42.0

Glass substrates are emerging as a key alternative to silicon and conventional organic substrates for high-density and high-performance systems due to their outstanding dimensional stability, enabling sub-5-µm lithographic design rules, excellent electrical performance, and unique mechanical properties, key in achieving board-level reliability at body sizes larger than 15 × 15 mm2. This paper describes the first demonstration of the board-level reliability of such large, ultrathin glass ball grid array (BGA) packages directly mounted onto a system board, considering both their thermal cycling and drop-test performances.

Institute of Electrical and Electronics Engineers (IEEE)

Creep Corrosion of PWB Final Finishes: Its Cause and Prevention

Technical Library | 2021-04-08 00:30:49.0

As the electronic industry moves to lead-free assembly and finer-pitch circuits, widely used printed wiring board (PWB) finish, SnPb HASL, has been replaced with lead-free and coplanar PWB finishes such as OSP, ImAg, ENIG, and ImSn. While SnPb HASL offers excellent corrosion protection of the underlying copper due to its thick coating and inherent corrosion resistance, the lead-free board finishes provide reduced corrosion protection to the underlying copper due to their very thin coating. For ImAg, the coating material itself can also corrode in more aggressive environments. This is an issue for products deployed in environments with high levels of sulfur containing pollutants encountered in the current global market. In those corrosive environments, creep corrosion has been observed and led to product failures in very short service life (1-5 years). Creep corrosion failures within one year of product deployment have also been reported. This has prompted an industry-wide effort to understand creep corrosion

Alcatel-Lucent

Latent heat induced deformation of PCB substrate: Measurement and simulation

Technical Library | 2022-12-05 16:28:06.0

The work evaluates the impact of latent heat (LH) absorbed or released by a solder alloy during melting or solidification, respectively, on changes of dimensions of materials surrounding of the solder alloy. Our sample comprises a small printed circuit board (PCB) with a blind via filled with lead-free alloy SAC305. Differential scanning calorimetry (DSC) was employed to obtain the amount of LH per mass and a thermomechanical analyzer was used to measure the thermally induced deformation. A plateau during melting and a peak during solidification were detected during the course of dimension change. The peak height reached 1.6 μm in the place of the heat source and 0.3 μm in the distance of 3 mm from the source. The data measured during solidification was compared to a numerical model based on the finite element method. An excellent quantitative agreement was observed which confirms that the transient expansion of PCB during cooling can be explained by the release of LH from the solder alloy during solidification. Our results have important implications for the design of PCB assemblies where the contribution of recalescence to thermal stress can lead to solder joint failure.

Czech Technical University in Prague

Design and Process Development for the Assembly of 01005 Passive Components

Technical Library | 2018-03-05 11:22:48.0

Growing demands for smaller electronic assemblies has resulted in reduced sizes of passive components, requiring the introduction of newer components, such as the 01005 devices. Component miniaturization presents significant challenges to the traditional surface mount assembly process. A successful assembly solution for these 01005 devices should be repeatable and reproducible, and should include guidelines for (i) the selection of solder paste and (ii) appropriate stencil and substrate pad design, and should ensure strict process control standards.

Sanmina-SCI

All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring

Technical Library | 2020-08-19 19:13:00.0

Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.

Georgia Institute of Technology

  1  

20a and excel searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Fluid Dispensing, Staking, TIM, Solder Paste

Software for SMT placement & AOI - Free Download.
best pcb reflow oven

High Precision Fluid Dispensers
convection smt reflow ovens

World's Best Reflow Oven Customizable for Unique Applications