Technical Library: 3d packaging (Page 1 of 2)

Underfill Materials Dispensing in Electronics Manufacturing Applications

Technical Library | 2025-08-29 13:53:05.0

In electronics manufacturing, "underfill" refers to a material that is applied to fill the gap between a semiconductor device, such as flip-chip assemblies, Ball Grid Arrays (BGA), or Chip Scale Packages (CSP), and the substrate, such as a PCB or flex circuit. It is also important in 3D ICs and advanced packaging technologies that involve stacking multiple chips or integrating multiple functions into a single package.

GPD Global

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

3D IC Development Needs Innovative Socket Solution

Technical Library | 2010-10-07 20:20:58.0

Evolution from cell phones with only a base-band processor and limited memory to today's high-end phones with an additional applications processor and memory has driven the industry to 3-D packaging solutions. 3-D packaging can be achieved via die stackin

Ironwood Electronics

Solderable Anisotropic Conductive Adhesives for 3D Package Applications

Technical Library | 2016-01-12 11:04:35.0

3D packaging has recently become very attractive because it can provide more flexibility in device design and supply chain, reduce the gap between silicon die and organic substrate, help miniaturize devices and meet the demand of high speed, provide more memory, more function and low cost. With the advancement of 3D packaging, the bump height is now down from 80μ to 10μ. When the bump diameter is 20-40μ and height 10μ, the process and reliability are obvious issues. It is well known that underfill can enhance the reliability for regular flip chip, however underfill won’t help assembly process. In order to resolve some difficulties that 3D packaging faces, YINCAE Advanced Materials, LLC has developed solderable anisotropic conductive adhesives for 3D package applications. In this paper we will discuss the assembly process and reliability in detail.

YINCAE Advanced Materials, LLC.

A Novel High Thermal Conductive Underfill For Flip Chip Appliation

Technical Library | 2014-02-27 15:30:20.0

Silicon dioxide is normally used as filler in underfill. The thermal conductivity of underfill is less than 1 w/mk, which is not able to meet the current flip chip application requirements such as 3D stacked multi-chips packaging. No matter which direction the heat will be dissipated through PCB or chip, the heat has to pass through the underfill in 3D stacked chips. Therefore the increase of thermal conductivity of underfill can significantly enhance the reliability of electronic devices, particularly in 3D package devices

YINCAE Advanced Materials, LLC.

2.5D and 3D Semiconductor Package Technology: Evolution and Innovation

Technical Library | 2017-09-14 01:21:52.0

The electronics industry is experiencing a renaissance in semiconductor package technology. A growing number of innovative 3D package assembly methodologies have evolved to enable the electronics industry to maximize their products functionality. By integrating multiple die elements within a single package outline, product boards can be made significantly smaller than their forerunners and the shorter interconnect resulting from this effort has contributed to improving both electrical performance and functional capability. (...) This paper outlines both positive and negative aspects of current 3D package innovations and addresses the challenges facing adopters of silicon and glass based interposer fabrication. The material presented will also reference 3D packaging standards and recognize innovative technologies from a number of industry sources, roadmaps and market forecasts.

Vern Solberg - Solberg Technical Consulting

Near Term Solutions For 3D Packaging Of High Performance DRAM

Technical Library | 2011-09-15 18:43:15.0

The revolution in performance driven electronic systems continues to challenge the IC packaging industry. To enable the new generations of processors to reach their performance potential many manufacturers have developed interface formats to enable greater memory bandwidth. To ensure that the memory functions are able to support the increased signal speed, package developers are relying more and more on innovative 3D package assembly techniques and process refinement.

Invensas Corporation

Modern 2D / 3D X-Ray Inspection - Emphasis on BGA, QFN, 3D Packages, and Counterfeit Components

Technical Library | 2010-09-16 18:45:06.0

With PCB complexity and density increasing and also wider use of 3D devices, tougher requirements are now imposed on device inspection both during original manufacture and at their subsequent processing onto printed circuit boards. More complicated and de

Nordson DAGE

Development of a Design & Manufacturing Environment for Reliable and Cost- Effective PCB Embedding Technology

Technical Library | 2011-10-06 13:59:04.0

The desire to have more functionality into increasingly smaller size end products has been pushing the PCB and IC Packaging industry towards High Density Interconnect (HDI) and 3D Packaging (stacked dies, embedded packaged components). Many companies in the high-end consumer electronics market place have been embedding passive chip components on inner PCB and IC Packages for a few years now. However, embedding packaged components on inner layers has remained elusive for the broader market due to lack of proper design tools and high cost of embedding components on inner layers (...) This paper will highlight several key industrialization aspects addressed in the frame of the European funded FP7 HERMES* project to build a manufacturing environment for products with embedded components. The program entered its third year and is now dealing with the manufacturing of functional demonstrators as an introduction to industrialization.

Cadence Design Systems, Inc.

Assembly Reliability of TSOP/DFN PoP Stack Package

Technical Library | 2018-12-12 22:20:22.0

Numerous 3D stack packaging technologies have been implemented by industry for use in microelectronics memory applications. This paper presents a reliability evaluation of a particular package-on-package (PoP) that offers a reduction in overall PCB board area requirements while allowing for increases in functionality. It utilizes standard, readily available device packaging methods in which high-density packaging is achieved by: (1) using standard "packaged" memory devices, (2) using standard 3-dimensional (3-D) interconnect assembly. The stacking approach provides a high level of functional integration in well-established and already functionally tested packages. The stack packages are built from TSOP packages with 48 leads, stacked either 2-high or 4-high, and integrated into a single dual-flat-no-lead (DFN) package.

Jet Propulsion Laboratory

  1 2 Next

3d packaging searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Selective Soldering Nozzles

Training online, at your facility, or at one of our worldwide training centers"
pressure curing ovens

Software for SMT placement & AOI - Free Download.
convection smt reflow ovens

Best Reflow Oven
2024 Eptac IPC Certification Training Schedule

Smt Feeder repair service centers in Europe, North, South America
PCB separator

Low-cost, self-paced, online training on electronics manufacturing fundamentals