Technical Library: 3d printing (Page 1 of 2)

Additive manufacturing frontier: 3D printing electronics

Technical Library | 2020-09-16 21:20:37.0

3D printing is disrupting the design and manufacture of electronic products. 3D printing electronics offers great potential to build complex object with multiple functionalities. Particularly, it has shown the unique ability to make embedded electronics, 3D structural electronics, conformal electronics, stretchable electronics, etc. 3D printing electronics has been considered as the next frontier in additive manufacturing and printed electronics. Over the past five years, a large number of studies and efforts regarding 3D printing electronics have been carried out by both academia and industries. In this paper, a comprehensive review of recent advances and significant achievements in 3D printing electronics is provided. Furthermore, the prospects, challenges and trends of 3D printing electronics are discussed. Finally, some promising solutions for producing electronics with 3D printing are presented.

Xian Jiaotong University

3D Printed Electronics for Printed Circuit Structures

Technical Library | 2018-10-10 21:26:52.0

Printed electronics is a familiar term that is taking on more meaning as the technology matures. Flexible electronics is sometimes referred to as a subset of this and the printing approach is one of the enabling factors for roll to roll processes. Printed electronics is improving in performance and has many applications that compete directly with printed circuit boards. The advantage of roll to roll is the speed of manufacturing, the large areas possible, and a reduction in costs. As this technology continues to mature, it is also merging with the high profile 3D printing. (...)This paper will show working demonstrations of printed circuit structures, the obstacles, and the potential future of 3D printed electronics.

nScrypt Inc.

Additively Manufactured mm-Wave Multichip Modules With Fully Printed "Smart" Encapsulation Structures

Technical Library | 2022-02-09 17:52:47.0

This article presents the first time that an millimeter-wave (mm-wave) multichip module (MCM) with on-demand "smart" encapsulation has been fabricated utilizing additive manufacturing technologies. RF and dc interconnects were fabricated using inkjet printing, while the encapsulation was realized using 3-D printing. Inkjet-printed interconnects feature superior RF performance, better mechanical reliability, and on-demand, low-cost fabrication process.

Georgia Institute of Technology

Printed Electronics: Manufacturing Technologies and Applications

Technical Library | 2023-03-13 19:35:47.0

Translational Research in Additive Manufacturing at GTMI * Additive manufacturing/3D printing process and equipment development (e.g., metal, polymer and composites part manufacturing) * Computational modeling and simulation of additive manufacturing/printed electronics processes * Advanced materials development for additive manufacturing/printed electronics * Application development and demonstration of additive manufacturing/printed electronics

Georgia Institute of Technology

Exploring 3D Printing

Technical Library | 2024-09-09 15:40:46.0

How curiosity and exploration of new technology and creation moves us business forward.

A-Laser, Inc.

Additive Manufacturing for Next Generation Microwave Electronics and Antennas

Technical Library | 2020-08-13 00:59:03.0

The paper will discuss the integration of 3D printing and inkjet printing fabrication technologies for microwave and millimeter-wave applications. With the recent advancements in 3D and inkjet printing technology, achieving resolution down to 50 um, it is feasible to fabricate electronic components and antennas operating in the millimeter-wave regime. The nature of additive manufacturing allows designers to create custom components and devices for specialized applications and provides an excellent and inexpensive way of prototyping electronic designs. The combination of multiple printable materials enables the vertical integration of conductive, dielectric, and semi-conductive materials which are the fundamental components of passive and active circuit elements such as inductors, capacitors, diodes, and transistors. Also, the on-demand manner of printing can eliminate the use of subtractive fabrication processes, which are necessary for conventional microfabrication processes such as photolithography, and drastically reduce the cost and material waste of fabrication.

Georgia Institute of Technology

IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments

Technical Library | 2020-03-04 23:53:17.0

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

SLAS Technology

3D Printing – A Next Generation Presentation Tool

Technical Library | 2024-08-16 22:29:20.0

Many engineers have a common frustration. Explaining the workings of some mechanism over a phone call or whilst sitting in a meeting without being hands-on with the product. Does the following sound familiar?

A-Laser, Inc.

Approaches for additive manufacturing of 3D electronic applications

Technical Library | 2020-09-16 21:24:56.0

Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

Institute for Factory Automation and Production Systems (FAPS)

Optimization of Stencil Apertures to Compensate for Scooping During Printing

Technical Library | 2018-03-07 22:41:05.0

This study investigates the scooping effect during solder paste printing as a function of aperture width, aperture length and squeegee pressure. The percent of the theoretical volume deposited depends on the PWB topography. A typical bimodal percent volume distribution is attributed to poor release apertures and large apertures, where scooping takes place, yielding percent volumes 100%. This printing experiment is done with a concomitant validation of the printing process using standard 3D Solder Paste Inspection (SPI) equipment.

Qual-Pro Corporation

  1 2 Next

3d printing searches for Companies, Equipment, Machines, Suppliers & Information

Selective Soldering Nozzles

High Precision Fluid Dispensers
PCB Handling with CE

Training online, at your facility, or at one of our worldwide training centers"
Thermal Interface Material Dispensing

We offer SMT Nozzles, feeders and spare parts globally. Find out more
PCB separator

SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...