Technical Library: 48 inch boards (Page 1 of 2)

Staking/Epoxy Adhesive Dispensing for Aerospace

Technical Library | 2023-08-16 18:48:50.0

One of our aerospace customers was looking to automate a few manual operations and asked for suggestions. This customer specializes in assemblies for inflight connectivity for commercial airlines and low orbit satellites. The dispensing process included the application of bonding to the sides of large and small components (4-axis) and the ability to cope with the changing viscosity during processing. The material used was EC-2216 B/A Two Part Epoxy and the largest board size was 12"x10"

GPD Global

High-Performance PCB Cleaning Machines

Technical Library | 2023-09-13 12:48:06.0

PCB cleaning machines are essential for ensuring the quality and reliability of printed circuit boards (PCBs). These machines remove contaminants and debris from PCBs, which can cause defects and reliability issues.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Assembly Reliability of TSOP/DFN PoP Stack Package

Technical Library | 2018-12-12 22:20:22.0

Numerous 3D stack packaging technologies have been implemented by industry for use in microelectronics memory applications. This paper presents a reliability evaluation of a particular package-on-package (PoP) that offers a reduction in overall PCB board area requirements while allowing for increases in functionality. It utilizes standard, readily available device packaging methods in which high-density packaging is achieved by: (1) using standard "packaged" memory devices, (2) using standard 3-dimensional (3-D) interconnect assembly. The stacking approach provides a high level of functional integration in well-established and already functionally tested packages. The stack packages are built from TSOP packages with 48 leads, stacked either 2-high or 4-high, and integrated into a single dual-flat-no-lead (DFN) package.

Jet Propulsion Laboratory

Cleanliness of Stencils and Cleaned Misprinted Circuit Boards

Technical Library | 2010-09-09 16:44:48.0

The effectiveness of cleaning stencils and misprinted/dirty printed circuit boards can be effectively monitored. This can be done by washing known clean circuit boards and then checking to see if they have stayed clean as a result of the washing process.

Research In Motion

Profiling for Successful BGA/CSP Rework

Technical Library | 2013-08-14 14:06:48.0

This paper discusses how to successfully profile a printed circuit board when reworking Ball Grid Array and Chip Scale Packages.

Metcal

A Case Study in Troubleshooting Shop Floor Rework Difficulties

Technical Library | 2007-04-05 13:48:50.0

Recently a large global player approached us with a problem. They needed an initial assembly solution for brand new components. Their boards and CSP specimens could not safely be soldered due to wetting problems at the solder joints.

MARTIN (a Finetech company)

Validity of the IPC R.O.S.E. Method 2.3.25 Researched

Technical Library | 2010-06-10 21:01:48.0

This paper researches the effectiveness of the R.O.S.E. cleanliness testing process for dissolving and measuring ionic contaminants from boards soldered with no-clean and lead-free flux technologies.

KYZEN Corporation

Detection of Bare PCB Defects by Image Subtraction Method using Machine Vision

Technical Library | 2011-08-11 20:06:48.0

(Proceedings of the World Congress on Engineering 2011) A Printed Circuit Board (PCB) consists of circuit with electronic components mounted on surface. There are three main steps involved in manufacturing process, where the inspection of PCB is necessar

Sant Longowal Institute of Engineering and Technology (SLIET)

Understanding SIR

Technical Library | 2014-02-06 17:49:48.0

Many electronics manufacturers perform SIR testing to evaluate solder materials and sometimes the results they obtain differ significantly from those stated by the solder material provider. The difference in the results is typically the result of SIR coupon preparation. This paper will discuss the issue of SIR coupon preparation, board cleaning techniques, and how board cleanliness directly affects SIR results.

Indium Corporation

  1 2 Next

48 inch boards searches for Companies, Equipment, Machines, Suppliers & Information