Technical Library: a smt solder joint (Page 3 of 14)

Mechanical stress test for component solder joints and bonding wires

Technical Library | 2016-08-24 06:15:35.0

From consumer electronics to systems control, automotive technology to aviation and aerospace – today, electronics are absolutely essential in many sectors. They increasingly replace mechanical components, eliminating wear and tear and thereby extending the service life. What is easily forgotten in this regard is that electronics are also subject to the laws of mechanics. Mechanical test equipment is crucial to test components for the secure hold of welded, soldered or adhesive bonds. A new, mechanically intricate test probe with universal clamping jaws, that can even grasp the individual bonding wires, is in line with the trend toward ever smaller components. Serving as an actuator for these is a micro drive that can be precisely controlled using a miniaturised motion controller to relieve the control unit in the test device.

XYZTEC bv

A Room Temperature Stable and Jetable Solder Joint Encapsulant Adhesive - Capillary Underfill Replacement

Technical Library | 2016-01-12 11:07:56.0

With the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, YINCAE has published a white paper on a first individual solder joint encapsulant which can eliminate underfilling process with at least five times solder joint increase and provide more flexibility for fine pitch and high density application. In order to meet the demand of manufacturing of high speed and low cost, YINCAE has invented a room temperature stable and jettable solder joint encapsulant adhesive – SMT 266. The invention of SMT 266 has allowed our customers to have more flexibility in their high-speed production line such as worry free on the work life of adhesive and workable jetting process.

YINCAE Advanced Materials, LLC.

How to Profile a PCB

Technical Library | 2009-04-22 21:13:19.0

An optimal reflow profile is one of the most critical factors in achieving quality solder joints on a printed circuit board (PCB) assembly with surface mount components. A profile is a function of temperatures applied to the assembly over time. When graphed on a Cartesian plane, a curve is formed that represents the temperature at a specific point on the PCB, at any given time, throughout the reflow process.

DDM Novastar Inc

How to Profile a PCB.

Technical Library | 2010-09-10 09:47:06.0

An optimal reflow profile is one of the most critical factors in achieving quality solder joints on a printed circuit board (PCB) assembly with surface mount components. A profile is a function of temperatures applied to the assembly over time. When graphed on a Cartesian plane, a curve is formed that represents the temperature at a specific point on the PCB, at any given time, throughout the reflow process.

Robert Bosch LLC Automotive Electronics Division

Developing a Reliable Lead-free SMT Process

Technical Library | 2008-01-03 17:50:51.0

Lead-free SMT can be achieved reliably if several process requirements are implemented carefully. Some of the variables to account for are listed below. The most common alloys used in lead-free SMT are tin-silver-copper alloys; these alloys all have a meting range between 217- 220°C. These alloys all melt at higher temperatures than traditional leaded solders such as the 63/37which has a melting point of 183 °C.

Kester

Article Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

Technical Library | 2017-12-27 22:52:43.0

To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process.

Jilin University

HALT Testing of Backward Soldered BGAs on a Military Product

Technical Library | 2015-11-19 18:15:07.0

The move to lead free (Pb-free) electronics by the commercial industry has resulted in an increasing number of ball grid array components (BGAs) which are only available with Pb-free solder balls. The reliability of these devices is not well established when assembled using a standard tin-lead (SnPb) solder paste and reflow profile, known as a backward compatible process. Previous studies in processing mixed alloy solder joints have demonstrated the importance of using a reflow temperature high enough to achieve complete mixing of the SnPb solder paste with the Pb-free solder ball. Research has indicated that complete mixing can occur below the melting point of the Pb-free alloy and is dependent on a number of factors including solder ball composition, solder ball to solder paste ratio, and peak reflow times and temperatures. Increasing the lead content in the system enables full mixing of the solder joint with a reduced peak reflow temperature, however, previous research is conflicting regarding the effect that lead percentage has on solder joint reliability in this mixed alloy solder joint.

Lockheed Martin Corporation

Operation of a Vacuum Reflow Oven with Void Reduction Data

Technical Library | 2021-04-21 19:28:30.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness.

BTU International

Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

Technical Library | 2021-06-15 18:36:00.0

To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology) production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 _m, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within _3%.

Jilin University

Fatigue Damage Behavior of a Surface-mount Electronic Package Under Different Cyclic Applied Loads.

Technical Library | 2014-07-10 17:37:18.0

This paper studies and compares the effects of pull–pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package.The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

Tsinghua University


a smt solder joint searches for Companies, Equipment, Machines, Suppliers & Information

KingFei SMT Tech
KingFei SMT Tech

Main Products: 1. Original new and Original Used SMT/AI Spare Parts. 2. SMT Equipments And Related Machine( SMT Calibration, SMT Feeder Carts,Conveyer etc.) 3. Maintenace and Repair Service Pre-Sales Service Provide details ab

Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

Building A, Jiepeng Square, Fuyong
Shenzhen, 30 China

Phone: 0755-33578694