Technical Library: adding (Page 3 of 3)

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites

Technical Library | 2020-10-14 14:49:14.0

In this study, the modification of an epoxy matrix with different amounts of cube-like and rod-like CaCO3 nanoparticles was investigated. The effects of variations in the morphology of CaCO3 on the mechanical properties and thermal stability of the CaCO3/epoxy composites were studied. The rod-like CaCO3/epoxy composites (EP-rod) showed a higher degradation temperature (4.5 _C) than neat epoxy. The results showed that the mechanical properties, such as the flexural strength, flexural modulus, and fracture toughness of the epoxy composites with CaCO3 were enhanced by the addition of cube-like and rod-like CaCO3 nanoparticles. Moreover, the mechanical properties of the composites were enhanced by increasing the amount of CaCO3 added but decreased when the filler content reached 2%. The fracture toughness Kic and fracture energy release rate Gic of cube-like and rod-like CaCO3/epoxy composites (0.85/0.74 MPa m1/2 and 318.7/229.5 J m

Inha University

Analysis of Interfacial Cracking in Flip Chip Packages With Viscoplastic Solder Deformation

Technical Library | 2023-11-27 18:29:45.0

This paper examines the modeling of viscoplastic solder behavior in the vicinity of interfacial cracking for flip chip semiconductor packages. Of particular interest is the relationship between viscoplastic deformation in the solder bumps and any possible interface cracking between the epoxy underfill layer and the silicon die. A 3-D finite element code, developed specifically for the study of interfacial fracture problems, was modified to study how viscoplastic solder material properties would affect fracture parameters such as strain energy release rate and phase angle for nearby interfacial cracks. Simplified two-layer periodic symmetry models were developed to investigate these interactions. Comparison of flip chip results using different solder material models showed that viscoplastic models yielded lower stress and fracture parameters than time independent elastic-plastic simulations. It was also found that adding second level attachment greatly increases the magnitude of the solder strain and fracture parameters. As expected, the viscoplastic and temperature dependent elastic-plastic results exhibited greater similarity to each other than results based solely on linear elastic properties. !DOI: 10.1115/1.1649242"

A.T.E. Solutions, Inc.

Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers

Technical Library | 2021-06-07 19:03:05.0

The waste from end-of-life electrical and electronic equipment has become the fastest growing waste problem in the world. The difficult-to-treat waste-printed circuit boards (WPCBs), which are nearly 3−6 wt % of the total electronic waste, generate great environmental concern nowadays. For WPCB treatment and recycling, the mechanical−physical method has turned out to be more technologically and economically feasible. In this work, the mechanical−physical treatment and recycling technologies for WPCBs were investigated, and future research was directed as well. Removing electric and electronic components(EECs) from WPCBs is critical for their crushing and metal recovery; however, environmentally friendly and high-efficiency removal techniques need be developed. Concentrated metals rich in Cu, Al, Au, Pb, and Sn recovered from WPCBs need be further refined to add to their economic values. The low value added nonmetallic fraction of waste-printed circuit boards (NMF-WPCBs) accounts for approximately 60 wt % of the WPCBs. From the perspective of environmental management, a zero-waste approach to recycling them should be developed to gain values. Preparing polymer composites and geopolymers offers many advantages and has potential applications in various fields, especially as construction and building materials. However, the mechanical and thermal properties of NMF-WPCBs composites should be further improved for preparing polymer composites. Surface modification or filler blending could be applied to improve the interfacial comparability between NMF-WPCBs and the polymer matrix. The NMFWPCBs shows potential in preparing cement mortar and geological polymers, but the environmental safety resulting from metals needs to be taken into account. This study will provide a significant reference for the industrial recycling of NMF-WPCBs

Zhejiang University

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)

Full Material Declarations: Removing Barriers to Environmental Data Reporting

Technical Library | 2019-09-04 21:35:53.0

Since the European Directives, RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), entered into force in 2006-7, the number of regulated substances continues to grow. REACH adds new substances roughly twice a year, and more substances will be added to RoHS in 2019. While these open-ended regulations represent an ongoing burden for supply chain reporting, some ability to remain ahead of new substance restrictions can be achieved through full material declarations (FMD) specifically the IPC-1752A Class D Standard (the "Standard"), which was developed by the IPC - Association Connecting Electronic Industries. What is important to the supply chain is access to user-friendly, easily accessible or free, fully supported tools that allow suppliers to create and modify XML (Extensible Markup Language) files as specified in the Standard. Some tools will provide enhancements that validate required data entry and provide real-time interactive messages to facilitate the resolution of errors. In addition, validation and auto-population of substance CAS (Chemical Abstract Service) numbers, and Class D weight rollup validation ensure greater success in the acceptance of the declarations in customer systems that automate data gathering and reporting. A good tool should support importing existing IPC-1752A files for editing; this capability reduces the effort to update older declarations and greatly benefits suppliers of a family of products with similar composition. One of the problems with FMDs is the use of "wildcard" non-CAS numbers based on a declarable substance list (DSL). While the substances in different company's lists tend to have some overlap, no two DSL’s are the same. We provide an understanding of the commonality and differences between representative DSLs, and the ability to configure how much of a non-DSL substance percent is allowed. Case studies are discussed to show how supplier compliance data, can be automatically loaded into the customer's enterprise compliance system. Finally, we briefly discuss future enhancements and other developments like Once an Article, Always an Article (O5A) that will continue to require IPC standards and supporting tools to evolve.

TE Connectivity

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

A Study on Effects of Copper Wrap Specifications on Printed Circuit Board Reliability

Technical Library | 2021-07-20 20:02:29.0

During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.

NASA Office Of Safety And Mission Assurance

Previous 1 2 3  

adding searches for Companies, Equipment, Machines, Suppliers & Information

SMTAI 2024 - SMTA International

Reflow Soldering 101 Training Course
PCB Handling Machine with CE

High Precision Fluid Dispensers
PCB Handling with CE

World's Best Reflow Oven Customizable for Unique Applications