Technical Library: adopt (Page 4 of 4)

Embracing a New Paradigm: Electronic Work Instructions (EWI)

Technical Library | 2019-03-15 16:26:50.0

While there have been quite dramatic and evident improvements in almost every facet of manufacturing over the last several decades owing to the advent and mass adoption of computer automation and networking, there is one aspect of production that remains stubbornly unaffected. Massive databases track everything from orders, to inventory, to personnel. CAD systems allow for interactive and dynamic 3D rendering and testing, digital troubleshooting, and simulation and analysis prior to mass production. Yet, with all of this computational power and all of this networking capability, one element of production has remained thoroughly and firmly planted in the past. Nearly all manufacturing or assembly procedures are created, deployed, and stored using methodologies derived from a set of assumptions that ceased to be relevant fifty years ago. This set of assumptions, referred to below as the “Paper Paradigm” has been, and continues as the dominant paradigm for manufacturing procedures to this day. It is time for a new paradigm, one that accounts for the vastly different technological landscape of this era, one that provides a simple, efficient interface, deep traceability, and dynamic response to rapidly changing economic forces.This paper seeks to present an alternative. Instead of enhancing and improving on systems that became irrelevant with the invention of a database, instead of propping up an outdated, outmoded and inefficient system with incremental improvements; rewrite the paradigm. Change the underlying assertions to more accurately reflect our current technological capability. Instead of relying on evolutionary improvements, it is time for a revolution in manufacturing instructions.

ScanCAD International, Inc.

ECM And IOT How To Predict, Quantify, And Mitigate ECM Failure Potential

Technical Library | 2021-07-27 14:54:26.0

Fast forward to current time. Today, our society embraces cleanliness. We expect, demand, and evaluate cleanliness in almost every aspect of our lives. We wash our cars and pets. We maintain high cleanliness standards in our hotels and public spaces. We require cleanliness in our restaurants and hospitals. We sanitize our hands throughout the day to prevent illness. We live in a clean-centric culture. While we drive clean cars, stay in clean hotels and eat clean food, there is one part of our life where we actually abandoned cleanliness. Many of the circuit assemblies that affect almost every aspect of our daily lives are no longer required to be clean. Even though our life experience confirms the link between cleanliness and reliability, happiness, health, and safety, circuit assemblies no longer maintain that "cleanliness is next to Godliness" status. This was not always the case. There was a time when virtually all circuit assemblies were cleaned. The removal of flux and other process-related contamination was commonplace. Cleaning was as normal as soldering. As we bring history into current time, one may relate the fall of Rome and its adoption of personal hygiene and the subsequent decline in human health to the large-scale abandonment of cleanliness expectations of circuit assemblies and the subsequent reliability issues it has created. How did this happen? Has history repeated itself?

Aqueous Technologies Corporation

An Investigation into Alternative Methods of Drying Moisture Sensitive Devices

Technical Library | 2021-11-26 14:34:07.0

The use of desiccant bags filled with Silica Sand and or Clay beads used in conjunction with a Moisture Barrier Bag to control moisture for storage of printed circuit boards has long been an accepted practice and standard from both JEDEC and IPC organizations. Additionally, the use heated ovens for baking off moisture using the evaporation process has also been a long#2;standing practice from these organizations. This paper on alternative drying methods will be accompanied by completed independent, unbiased tests conducted by Vinny Nguyen, an engineering student (now graduated) from San Jose State University. The accompanied paper will examine the performance levels of different technologies of desiccant bags to control moisture in enclosed spaces. The tests and equipment set were reviewed by an engineer and consultant to the Lockheed Martin Aerospace Division and the IPC - TM-650 2.6.28 test method was review by engineer from pSemi. The tests were designed to mimic performance tests outlined in Mil Spec 3464, which both IPC and JEDEC have adopted for their respective standards. The test examined variables including absorption capacity rates, weight gain and release of moisture back into the enclosed area. The presentation will also address and highlight: • Similarities of PCBs and Heavy Equipment as it applies to Inspections, Causes of Failure, Types of Corrosion and Moisture Collection Points. • Performance Attributes of Different Desiccant Technologies as it applies to shape, texture, change outs, labeling and regeneration. • Venn Diagram of Electromechanical Failure with the circles 1. Current 2. Contamination 3. Humidity Presentation Available

Steel Camel

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

The Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations the Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations

Technical Library | 2020-11-24 23:01:04.0

The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.

Indium Corporation

Difference between Neutral and Acid Salt Spray Corrosion Test

Technical Library | 2019-12-13 00:39:29.0

Salt spray corrosion chamber can test the ability of material and its protective layer to resist salt mist corrosion, or compare the process quality of similar protective layers, at the same time; this equipment is suitable for parts, electronic components, protective layer of metal material and other industrial products. Salt spray test is divided into neutral and acid test. What is the difference between neutral and acid in salt spray test? First, the temperature applied in the test method is different: Neutral test: a. Laboratory:35°C ±1°C, b. Saturated air drums:47°C ±1°C Acid test: a. Laboratory:50°C ±1°C, b. Saturated air drums:63°C ±1°C Second, the production material is different,neutral test chamber adoptes the traditional PVC plates, acid test chamber asopts PP sheet,which is more high temperature resistance and suits strong acid test. Third. Different test methods satisfied Neutral salt spray chamber according to GB/T 2423.17-2008, GB/T 2423.18-2000, salt spray test method and GB/T 10125-1997, GB/T 10587-2006, GB10593.2-1990, GB/T 1765-1979, GB/T 1771-2007, GB/T 12967.388, GB/T 1705.8-2008, etc. In addition to the test methods specified in the national standard, acid salt spray chamber also needs to expand the standard setting such as IEC,MIL,DIN,ASTM,IS,CNS. Last, Comparison of neutral test solutions China: NaCI distilled water solution NaCI mass concentration (50 ±5) g ≤ l pH value 6.5 ≤ 7.2 United States: distilled water solution NaCI mass concentration 5% ±1% pH value 6.5 ≤ 7.2 Germany: NaCI distilled water solution NaCI mass concentration (50 ±5) g ≤ l pH value 6.5 ≤ 7.2 Japan: NaCI distilled water solution NaCI mass concentration 5% ±1% pH pH value 6.5 ~ 7.2 France: NaCI distilled water solution NaCI mass concentration 5% pH 6.5 ≤ 7.2 https://climatechambers.com/articles&latestnews/difference-between-neutral-and-acid-salt-spray-corrosion-test.html

Symor Instrument Equipment Co.,Ltd

Symor ESD storage dry cabinet(Working principle)

Technical Library | 2019-04-08 23:21:29.0

Climatest Symor® adopts molecular sieve to dry air, the whole system is controlled by microcomputer, when humidity is high, It will start to absorb moisture,when the humidity reach the pre-set value, it will stop absorbing, and then discharge the water to outside the cabinet by heating,again and again by automatic control. The most effective and environment-friendly moisture-absorbing desiccant is molecular sieve, molecular sieve is the microporous crystal material synthesized by silicon and aluminium oxide. In order to keep the crystal net discharge to be zero, atoms with cations are located in the crystal structure.and the cation used in these synthetic crystals is usually sodium. At present, there are two kinds of molecular sieves widely used in the dry box industry: Class A and Class X. Molecular sieves are synthesized, shaped and activated under strictly controlled production processes. The whole controlled sythesis process can ensure consistency of the three-dimensional pore size. 3A molecular sieve pore size is 3 angstroms, 4A molecular sieve pore size is 4 angstroms; 13X molecular sieve pore size is 8.5 angstroms. The working principle of molecular sieve: Molecular sieves adsorb molecules onto the crystal surface by physical attraction force. Since 95% surface area of the molecular sieve is within aperture,it needs to screen the adjacent molecules by different size. Only small size molecules can enter into the inner adsorption surface of the molecular sieve through the crystal aperture. This selective adsorption phenomenon is called molecular sieve effect. The molecular sieve adsorption capacity and charge density (polarity) are further related to the adsorbed molecules. The molecular sieves can further distinguish which of the mixed molecules can be adsorbed and determine to what extent the charge density can allow the molecules to be adsorbed onto the crystal. Water molecules are particularly small (2.6 angstroms), that belong to highly polar molecules (very strong positive and negative electron density), and are easily adsorbed by molecular sieves, even under very low moisture condition,once the water molecules are adsorbed,they will be firmly fixed on the crystal. The environment-friendly moisture absorption device is equipped with molecular sieve. When it’s absorbing, the memory alloy controller is in tensile state, and the spring is in contractive state,which just make the valve contact the outer baffle, this insulates the outside air from inside dry box air to achieve dehumidification purpose; and after molecular sieve absorbed moisture inside dry box and become saturated, the program will automatically control the memory alloy device to shrink it so that the valve reaches the inner baffle position. Meanwhile, due to the shrinkage of the memory alloy, the spring is stretched and the valve is pulled out of the outer baffle,so that the moisture in molecular sieve will be discharged into the outside. after the dehumidifying process finished, the program automatically control and reset the memory alloy and spring,to restart absorbing status.

Symor Instrument Equipment Co.,Ltd

Previous 1 2 3 4  

adopt searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Void Free Reflow Soldering

Software for SMT placement & AOI - Free Download.
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Voidless Reflow Soldering

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...