Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2022-03-02 20:51:50.0
The effect of long-term storage on manufacturability and reliability is an area of major concern for companies that attempt to proactively manage component availability and obsolescence. A number of issues can arise depending on the technology and storage environment. Mechanisms of concern can include solderability, stress driven diffusive voiding, kirkendahl voiding, and tin whiskering. Of all of these, solderability / wettability remains the number one challenge in longterm storage.
Technical Library | 2019-04-08 23:21:29.0
Climatest Symor® adopts molecular sieve to dry air, the whole system is controlled by microcomputer, when humidity is high, It will start to absorb moisture,when the humidity reach the pre-set value, it will stop absorbing, and then discharge the water to outside the cabinet by heating,again and again by automatic control. The most effective and environment-friendly moisture-absorbing desiccant is molecular sieve, molecular sieve is the microporous crystal material synthesized by silicon and aluminium oxide. In order to keep the crystal net discharge to be zero, atoms with cations are located in the crystal structure.and the cation used in these synthetic crystals is usually sodium. At present, there are two kinds of molecular sieves widely used in the dry box industry: Class A and Class X. Molecular sieves are synthesized, shaped and activated under strictly controlled production processes. The whole controlled sythesis process can ensure consistency of the three-dimensional pore size. 3A molecular sieve pore size is 3 angstroms, 4A molecular sieve pore size is 4 angstroms; 13X molecular sieve pore size is 8.5 angstroms. The working principle of molecular sieve: Molecular sieves adsorb molecules onto the crystal surface by physical attraction force. Since 95% surface area of the molecular sieve is within aperture,it needs to screen the adjacent molecules by different size. Only small size molecules can enter into the inner adsorption surface of the molecular sieve through the crystal aperture. This selective adsorption phenomenon is called molecular sieve effect. The molecular sieve adsorption capacity and charge density (polarity) are further related to the adsorbed molecules. The molecular sieves can further distinguish which of the mixed molecules can be adsorbed and determine to what extent the charge density can allow the molecules to be adsorbed onto the crystal. Water molecules are particularly small (2.6 angstroms), that belong to highly polar molecules (very strong positive and negative electron density), and are easily adsorbed by molecular sieves, even under very low moisture condition,once the water molecules are adsorbed,they will be firmly fixed on the crystal. The environment-friendly moisture absorption device is equipped with molecular sieve. When it’s absorbing, the memory alloy controller is in tensile state, and the spring is in contractive state,which just make the valve contact the outer baffle, this insulates the outside air from inside dry box air to achieve dehumidification purpose; and after molecular sieve absorbed moisture inside dry box and become saturated, the program will automatically control the memory alloy device to shrink it so that the valve reaches the inner baffle position. Meanwhile, due to the shrinkage of the memory alloy, the spring is stretched and the valve is pulled out of the outer baffle,so that the moisture in molecular sieve will be discharged into the outside. after the dehumidifying process finished, the program automatically control and reset the memory alloy and spring,to restart absorbing status.
Technical Library | 2024-01-08 18:44:00.0
Printed circuit boards, especially multilayer, flexible and rigid-flexible printed circuit boards, are extremely hygroscopic, i.e. they absorb and bind the moisture in the air. A dried polyimide film, for example, will have reached its moisture saturation level again after just a few hours.
Technical Library | 2018-09-21 10:12:53.0
Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.
Technical Library | 2022-09-12 14:07:47.0
Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.
Technical Library | 2009-12-03 14:27:29.0
This paper provides additional data in support of shelf life extension for BGA and Die Size BGA (DSBGA) Packages.
Technical Library | 2009-12-03 12:51:58.0
Each year the semiconductor industry routes a significant volume of devices to recycling sites for no reliability or quality rationale beyond the fact that those devices were stored on a warehouse shelf for two years. This study identifies the key risks attributed to extended storage of devices in uncontrolled indoor environments and the risk mitigation required to permit safe shelf-life extension.
Technical Library | 2024-06-19 15:23:54.0
Each year the semiconductor industry routes a significant volume of devices to recycling sites for no reliability or quality rationale beyond the fact that those devices were stored on a warehouse shelf for two years. This study identifies the key risks attributed to extended storage of devices in uncontrolled indoor environments and the risk mitigation required to permit safe shelf-life extension. Component reliability was evaluated after extended storage to assure component solderability, MSL stability and die surface integrity. Packing materials were evaluated for customer use parameters as well as structural integrity and ESD properties. Results show that current packaging material (mold compound and leadframe) is sufficiently robust to protect the active integrated circuits for many decades and permit standard reflow solder assembly beyond 15 years. Standard packing materials (bags, desiccant, and humidity cards) are robust for a 32 month storage period that can be extended by repacking with fresh materials. Packing materials designed for long term storage are effective for more than five years.
Technical Library | 2024-06-19 13:59:50.0
The solderability of a nickel-palladium-gold (Ni-Pd-Au) finish on a Cu substrate was evaluated for the Pb-free solder, 95.5Sn-3.9Ag-0.6 Cu (wt.%, abbreviated Sn-Ag-Cu) and the eutectic 63Sn-37 Pb (Sn-Pb) alloy. The solder temperature was 245ºC. The flux was a rosin-based mildly activated (RMA) solution. The Ni-Pd-Au finish was tested in the as-fabricated condition as well as after exposure to one of the following accelerated storage (shelf life) regiments: