Technical Library: agilent agilent 8757d (Page 1 of 1)

The Morphology Evolution and Voiding of Solder Joints on QFN Central Pads with a Ni/Au Finish

Technical Library | 2012-10-18 21:58:51.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. In this paper, we report on a comprehensive study regarding the morphology evolution and voiding of SnAgCu solder joints on the central pad of two different packages – QFN and an Agilent package called TOPS – on PCBs with a Ni/Au surface finish.

Agilent Technologies, Inc.

Thermal Cycle Reliability Study of Vapor Phase BGA Solder Joints

Technical Library | 2012-09-13 20:45:17.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Prior to committing production boards to vapor phase soldering, we performed an evaluation to assess reliability and evaluate the vacuum soldering option. The reliability of vapor

Agilent Technologies, Inc.

Gold Embrittlement In Lead-Free Solder.

Technical Library | 2014-08-07 15:13:44.0

Gold embrittlement in SnPb solder is a well-known failure mechanism in electronic assembly. To avoid this issue, prior studies have indicated a maximum gold content of three weight percent. This study attempts to provide similar guidance for Pb-free (SAC305) solder. Standard surface mount devices were assembled with SnPb and SAC305 solder onto printed boards with various thicknesses of gold plating. The gold plating included electroless nickel immersion gold (ENIG) and electrolytic gold of 15, 25, 35, and 50 microinches over nickel. These gold thicknesses resulted in weight percentages between 0.4 to 7.0 weight percent.

DfR Solutions (acquired by ANSYS Inc)

Pad Cratering Susceptibility Testing with Acoustic Emission

Technical Library | 2015-08-13 15:52:40.0

Pad cratering has become more prevalent with the switch to lead free solders and lead free compatible laminates. This mainly is due to the use of higher reflow temperature, stiffer Pb-free solder alloys, and the more brittle Pb-free compatible laminates. However, pad cratering is difficult to detect by monitoring electric resistance since pad cratering initiates before an electrical failure occurs. Several methods have been developed to evaluate laminate materials' resistance to pad cratering. Pad-solder level tests include ball shear, ball pull and pin pull. The detailed methods for ball shear, ball pull, and pin pull testing are documented in an industry standard IPC-9708. Bansal, et al. proposed to use acoustic emission (AE) sensors to detect pad cratering during four-point bend test. Currently there is an industry-working group working on test guidelines for acoustic emission measurement during mechanical testing.

Agilent Technologies, Inc.

  1  

agilent agilent 8757d searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

Training online, at your facility, or at one of our worldwide training centers"
SMT spare parts - Qinyi Electronics

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
best pcb reflow oven

Component Placement 101 Training Course
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
Circuit Board, PCB Assembly & electronics manufacturing service provider

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.