Technical Library: aging test (Page 1 of 2)

Material Aging Test-UV Weathering Test Chamber

Technical Library | 2019-11-15 02:20:26.0

Material Aging Test-UV Weathering Test Chamber 1.What is UV aging? UV aging chambers use fluorescent ultraviolet lamp as light source to simulate UV radiation and condensation in natural sunlight, and to carry out accelerated weather resistance test in order to obtain the result of weather resistance of the material. UV aging detection is widely used in non-metallic materials, organic materials (such as coatings, paints, rubber, plastics and their products) under the change of sunlight, humidity, temperature, condensation and other climatic conditions to test the aging degree and situation of related products and materials. 2.Why we should do UV aging test? When the product is placed in the ambient environment, there will be different problems taken place, such as appearance changes, including cracking, speckle, powdering or color change, and even performance degradation,which may be due to the loss of components in the resin resulting in chemical bonds changes inside the molecular structure, this is mainly caused by sunlight, industrial exclusion of waste gas, bacteria and so on. The aging performance of the product directly affects the lifespan of the product, so aging test become significant,non-metallic materials, organic materials (such as paints, paints, rubber, plastics and their products) are subject to changes in sunlight, humidity, temperature, condensation and other climatic conditions to test the degree and condition of aging of related products and materials. The natural aging test is to put the plastic specimen under the sun exposure, and it is directly under the natural climate environment,to test the material performance under various factors such as light, heat energy, atmospheric humidity, oxygen and ozone, industrial pollution and the like, the most harsh climate condition should be selected,or near the actual application area of the material, the test site shall be open and flat, no obstacle to affect the test results,the specimen holder shall be facing the equator and at an angle of 45 ° from the ground. When the main performance index of the specimen has been reduced, the test s/b terminated when it achieve the minimum allowable use value . in most case,the test is terminated when the product primary performance index falls to 50% of the initial value. The natural aging process is a very slow process, and there is a great difference in different geographical conditions, which brings difficulties to evaluate the aging resistance of the product. It is an attempt to make an evaluation of the aging performance of the plastic in a shorter time,that is accelerated aging test. The accelerated aging test can be used to simulate the human light source of the fluorescent lamp, including the carbon arc lamp, the xenon arc lamp and the fluorescent ultraviolet lamp, and the artificial light sources can generate more light than the natural sunlight on the ground. When these artificial light sources are used, it is also common to use the combination of the condenser to simulate the rain drop, the dew and the like to conduct the aging test on the product.

Symor Instrument Equipment Co.,Ltd

Effects of Packaging Materials on the Lifetime of LED Modules Under High Temperature Test

Technical Library | 2014-11-18 23:59:30.0

Performance degradation of packaging material is an important reason for the lifetime reduction of LED. In order to understanding the failure behavior of packaging material, silicone and phosphor were chosen to fabricate LED samples within which an aging test at 125℃ was performed. The result of online luminance measurement showed that LED samples with both silicone and phosphor had the highest luminance decay rate among all test samples because the carbonization of silicone and the consequent outgassing reduced the luminance quickly. The result of the luminance variance with test time was analyzed and an exponential decay model was developed with which the lifetime of LED under high temperature could be estimated.

Hubei University of Technology

Long Term Thermal Reliability of Printed Circuit Board Materials

Technical Library | 2016-09-15 17:10:40.0

This paper describes the purpose, methodology, and results to date of thermal endurance testing performed at the company. The intent of this thermal aging testing is to establish long term reliability data for printed wiring board (PWB) materials for use in applications that require 20+ years (100,000+ hours) of operational life under different thermal conditions. Underwriters Laboratory (UL) testing only addresses unclad laminate (resin and glass) and not a fabricated PWB that undergoes many processing steps, includes copper and plated through holes, and has a complex mechanical structure. UL testing is based on a 5000 hour expected operation life of the electronic product. Therefore, there is a need to determine the dielectric breakdown / degradation of the composite printed circuit board material and mechanical structure over time and temperature for mission critical applications.

Amphenol Printed Circuit Board Technology

Effect of Thermal Aging on Solderabilityof ENEPIG Surface Finish Used in Printed Circuit Boards

Technical Library | 2021-12-29 19:52:50.0

Medtronic seeks to quantify the thermal aging limits of electroless Ni-electroless Pd-immersion Au (ENEPIG) surface finishes to determine how aggressive the silicon burn-in process can be without loss of solderability. Silicon burn-in (power testing at elevated temperature) is used to eliminate early field failures, critical for device reliability. Thermal aging due to burn-in or annealing causes Ni and Pd diffusion to and oxidation on the surface. Surface oxides limit wetting of the PbSn solder, affecting electrical connectivity of components soldered afterburn-in. Isothermal aging of two ENEPIG surface finishes was performed at 75°C-150°C for 100 hrs-1500hrs to test the thermal aging limits and identify how loss of solderability occurs.

Purdue University

Electrochemical Sensors

Technical Library | 2022-01-19 17:25:29.0

Electrochemical sensors are a class of sensors in which the transducer component is the electrode. These methods are presently utilized in a wide assortment of business applications. These sensors are significant for some factors: the utilization of the electron for signal obtaining, which is known to be a perfect model for logical applications, without squander age; scaling down in versatile gadgets (test microvolume investigation); quick examination; and minimal effort of creation, permitting these techniques to be promoted (for example as business glucose sensors).

Chandigarh University

RELIABLE NICKEL-FREE SURFACE FINISH SOLUTION FOR HIGHFREQUENCY-HDI PCB APPLICATIONS

Technical Library | 2020-08-05 18:49:32.0

The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper. An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atoms diffusion into gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

LiloTree

Can Age and Storage Conditions Affect the SIR Performance of a No-Clean Solder Paste Flux Residue?

Technical Library | 2017-02-09 17:08:44.0

The SMT assembly world, especially within the commercial electronics realm, is dominated by no-clean solder paste technology. A solder paste flux residue that does not require removal is very attractive in a competitive world where every penny of assembly cost counts. One important aspect of the reliability of assembled devices is the nature of the no-clean solder paste flux residue. Most people in this field understand the importance of having a process that renders the solder paste flux residue as benign and inert as possible, thereby ensuring electrical reliability.But, of all the factors that play into the electrical reliability of the solder paste flux residue, is there any impact made by the age of the solder paste and how it was stored? This paper uses J-STD-004B SIR (Surface Insulation Resistance) testing to examine this question.

Indium Corporation

Thermal Capabilities of Solder Masks and Other Coating Materials - How High Can We Go?

Technical Library | 2019-09-24 15:41:53.0

This paper focuses on three different coating material groups which were formulated to operate under high thermal stress and are applied at printed circuit board manufacturing level. While used for principally different applications, these coatings have in common that they can be key to a successful thermal management concept especially in e-mobility and lighting applications. The coatings consist of: Specialty (green transparent) liquid photoimageable solder masks (LPiSM) compatible with long-term thermal storage/stress in excess of 150°C. Combined with the appropriate high-temperature base material, and along with a suitable copper pre-treatment, these solder resists are capable of fulfilling higher thermal demands. In this context, long-term storage tests as well as temperature cycling tests were conducted. Moreover, the effect of various Cu pre-treatment methods on the adhesion of the solder masks was examined following 150, 175 and 200°C ageing processes. For this purpose, test panels were conditioned for 2000 hours at the respective temperatures and were submitted to a cross-cut test every 500 h. Within this test set-up, it was found that a multi-level chemical pre-treatment gives significantly better adhesion results, in particular at 175°C and 200°C, compared with a pre-treatment by brush or pumice brush. Also, breakdown voltage as well as tracking resistance were investigated. For an application in LED technology, the light reflectivity and white colour stability of the printed circuit board are of major importance, especially when high-power LEDs are used which can generate larger amounts of heat. For this reason, a very high coverage power and an intense white colour with high reflectivity values are essential for white solder masks. These "ultra-white" and largely non-yellowing LPiSM need to be able to withstand specific thermal loads, especially in combination with high-power LED lighting applications. The topic of thermal performance of coatings for electronics will also be discussed in view of printed heatsink paste (HSP) and thermal interface paste (TIP) coatings which are used for a growing number of applications. They are processed at the printed circuit board manufacturing level for thermal-coupling and heat-spreading purposes in various thermal management-sensitive fields, especially in the automotive and LED lighting industries. Besides giving an overview of the principle functionality, it will be discussed what makes these ceramic-filled epoxy- or silicone-based materials special compared to using "thermal greases" and "thermal pads" for heat dissipation purposes.

Lackwerke Peters GmbH + Co KG

Serious to make dry oven

Technical Library | 2019-11-13 02:09:44.0

Dry oven is a must instrument almost for every laboratory in different industries,with nearly 20 years efforts and innovation,Climatest now masters core technique of dry oven manufacturing,no matter on temperature uniformity or temperature stability.Behind the quality is 15 years of consistent persistence,strong belief in excellence; from design to R & D to production, from promotion to sales to installation; every step should reach excellence,What you see, you use our products, you choose, you feel that we do our best,this is our faith. Dry Ovens are used to dry or temper electronic components,material tests,torrefaction, wax-melting ,high temperature aging ,preheating and sterilization in industrial and mining enterprises, laboratories and scientific research institutes. .Exterior chamber is made by reinforced steel with painting; working chamber made by anti-corrosion stainless steel SUS#304 .Intelligent PID control, LED controller with over-temperature alarm,timing range within 0~9999min .Hot air circulation system composed of Germany imported low-noisy air blower and optimal air duct which ensure uniform temperature distribution .Double layers of glass door, large transparent window to observe specimen .Forced air convection Climatest manufactures desktop and floor-standing models with RT+10°C-200°C,250°C,300°C,350°C,400°C temperature range,and customized as per special requirement,if you wanna know more details about our dry oven,please visit our product page:https://climatechambers.com/industrial-dry-oven/200-degree-c-hot-air-oven.html

Symor Instrument Equipment Co.,Ltd

SMT Stencil, Surface Performance Returning to Basics in the SMT Screen Printing Process to Significantly Improve the Paste Deposition

Technical Library | 2018-03-15 07:23:35.0

The SMT assembly process is continuously challenged by the factors which enhance circuit board performance and limit productivity. The pick and place and reflow systems reflect these driven issues by adding more and more controls to their systems, but the fact is one of the age old processes continues to operate within the same rules since the dawn of the SMT assembly world: The SMT screen printing. (...)This paper showcases a new stencil process that was discovered by reverting to the basics:understanding the reason for each stencil material process, focusing on detailed finishes and a disciplined aperture design process, maintaining original designs, and making the correctly designed apertures to control the paste deposition. The test results drove us to focus the efforts on the aperture walls In this paper we will demonstrate with lab tests SMT process results howthe improved paste release results in improved SMT print process performance and its positive impact on SPI yields and EOL performance.

InterLatin

  1 2 Next

aging test searches for Companies, Equipment, Machines, Suppliers & Information

consignment program

High Throughput Reflow Oven


High Precision Fluid Dispensers
Thermal Interface Material Dispensing

World's Best Reflow Oven Customizable for Unique Applications