Technical Library: alloy sac 305 profile (Page 3 of 3)

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy

Technical Library | 2021-10-20 18:21:06.0

The solderability of the SAC305 alloy in contact with printed circuit boards (PCB) having different surface finishes was examined using the wetting balance method. The study was performed at a temperature of 260 _C on three types of PCBs covered with (1) hot air solder leveling (HASL LF), (2) electroless nickel immersion gold (ENIG), and (3) organic surface protectant (OSP), organic finish, all on Cu substrates and two types of fluxes (EF2202 and RF800). The results showed that the PCB substrate surface finish has a strong effect on the value of both the wetting time t0 and the contact angle h. The shortest wetting time was noted for the OSP finish (t0 = 0.6 s with EF2202 flux and t0 = 0.98 s with RF800 flux), while the ENIG finish showed the longest wetting time (t0 = 1.36 s with EF2202 flux and t0 = 1.55 s with RF800 flux). The h values calculated from the wetting balance tests were as follows: the lowest h of 45_ was formed on HASL LF (EF2202 flux), the highest h of 63_ was noted on the OSP finish, while on the ENIG finish, it was 58_ (EF2202 flux). After the solderability tests, the interface characterization of cross-sectional samples was performed by means of scanning electron microscopy coupled with energy dispersive spectroscopy.

Foundry Research Institute

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

Novel Approach to Void Reduction Using Microflux Coated Solder Preforms for QFN/BTC Packages that Generate Heat

Technical Library | 2019-08-07 22:56:45.0

The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.

Alpha Assembly Solutions

Previous 1 2 3  

alloy sac 305 profile searches for Companies, Equipment, Machines, Suppliers & Information