Technical Library: alpha lead free solder wire (Page 1 of 1)

StencilQuick™ Lead-Free Solder Paste Rework Study

Technical Library | 2007-01-31 15:17:04.0

The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.

BEST Inc.

The Conditions and Solutions of Lead-free Hand Soldering

Technical Library | 2013-01-05 22:21:01.0

More and more countries legislate to forbib lead usage in solder material. However, the lead-free solder wire has higher melting point and soldering temperature, increase soldering iron temperature may damage the PCB or components. How to solve this problem?

Leisto Industrial Co., Limited

The Impact of Reflowing A Pb-free Solder Alloy Using A Tin/Lead Solder Alloy Reflow Profile On Solder Joint Integrity.

Technical Library | 2008-04-29 15:50:45.0

The electronics industry is undergoing a materials evolution due to the pending Restriction of Hazardous Substances (RoHS) European Directive. Printed wiring board laminate suppliers, component fabricators, and printed wiring assembly operations are engaged in a multitude of investigations to determine what leadfree (Pbfree) material choices best fit their needs. The size and complexity of Pbfree implementation insures a transition period in which Pbfree and tin/lead solder finishes will be present on printed wiring assemblies

Rockwell Collins

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications

Technical Library | 2019-01-09 19:19:52.0

The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.

Koki Company LTD

Effect of Alloy and Flux System on High Reliability Automotive Applications

Technical Library | 2017-01-05 16:55:11.0

The July 2006 implementation of ROHS exempted automotive applications from converting to lead free technology. Nine years later, all major OEM and Tier 1 automotive manufacturers have converted or are in the process of converting to lead free circuit assembly processing. Starting with SAC (SnAgCu) alloys as a baseline for lead free soldering, in the last years several specific alloys were developed in order to improve resistance to high temperature creep, vibration survival and the ability to withstand thermal cycling and thermal shock.The paper compares three different solder alloys and two flux chemistries in terms of void formation and mechanical / thermal fatigue properties. Void content and reliability data of the alloys will be presented and discussed in relation to the acceptance criteria of a Tier 1 /OEM automotive supplier. As a result, a ranking list will be presented considering the combined performance of the alloys. In order to analyze the void formation and mechanical behavior of different solder alloys and flux chemistry combinations, statistical methods are used.

MacDermid Alpha Electronics Solutions

Effect of Silver in Common Lead-Free Alloys

Technical Library | 2023-01-02 17:50:34.0

Silver bearing alloys have been used in electronics soldering for many years. Silver has been used in tin-lead solders (Sn62Pb36Ag2) to combat silver scavenging from silver plated electronic components as well as to improve thermal fatigue resistance. Many of the common lead-free alloys contain some amount of silver. Silver bearing alloys have good electrical and thermal conductivity as well as the ability to wet to the common surface finishes used in printed wiring assemblies, thus giving it all the attributes needed for an electronic solder alloy. Presence of silver in Sn based solders increases the bulk solder modulus and is generally believed to improve resistance to fatigue from thermal cycles. Increased solder modulus can be advantageous or disadvantageous depending on the desired performance attribute. For example in high strain rate situations, higher modulus of the bulk solders results in lower life time. A wide variety of leaded and lead-free

Cookson Electronics Assembly Materials

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2023-08-04 15:27:30.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2024-04-08 15:46:36.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Preparation, Manufacturing Lead-Free Soldering Alloy

Technical Library | 2014-11-28 15:55:13.0

A soldering alloy composition Sn40-Bi60 has been manufactured by quenching method to achieve the both cast and wire shape. Differential scanning calorimetric (DSC) was done to study the melting behavior for a large portion of the alloy melts sharply at a approximately 136 C0 ,the melting point of Sn-Bi. X-Ray diffraction and optical microscopy were used to analyzed its microstructure characterization. The hardness of the alloys has been tested and find at a value 2 HRB as ductile form.

University of Baghdad

Soldering Immersion Tin

Technical Library | 2019-04-10 22:08:31.0

The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.

Atotech

  1  

alpha lead free solder wire searches for Companies, Equipment, Machines, Suppliers & Information

pressure curing ovens

Training online, at your facility, or at one of our worldwide training centers"
2024 Eptac IPC Certification Training Schedule

High Resolution Fast Speed Industrial Cameras.
thru hole soldering and selective soldering needs

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
2024 Eptac IPC Certification Training Schedule

Software for SMT placement & AOI - Free Download.
PCB Depanelizers

Private label coffee for your company - your logo & message on each bag!