Technical Library | 2014-06-19 18:13:23.0
For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...
Technical Library | 2018-08-15 17:27:28.0
Smartphones and tablets require very high flexibility and severe bending performance ability of the flexible printed circuits (FPCs) to fit into their thinner and smaller body designs. In these FPCs, the extraordinary highly flexible, treated rolled-annealed (RA) copper foils have recently used instead of regular RA foil and electro deposited foils. It is very important to measure the Young's moduli of these foils predicting the mechanical properties of FPCs such as capabilities of fatigue endurance, folding, and so on. Even though the manufacturers use IPC TM-650 2.4.18.3 test method for measuring Young's modulus of copper foils over many years, where Young's modulus is calculated from the stress–strain (S–S) curve, it is quite difficult to obtain the accurate Young's modulus of metal foils by this test method.
Technical Library | 2021-12-29 19:52:50.0
Medtronic seeks to quantify the thermal aging limits of electroless Ni-electroless Pd-immersion Au (ENEPIG) surface finishes to determine how aggressive the silicon burn-in process can be without loss of solderability. Silicon burn-in (power testing at elevated temperature) is used to eliminate early field failures, critical for device reliability. Thermal aging due to burn-in or annealing causes Ni and Pd diffusion to and oxidation on the surface. Surface oxides limit wetting of the PbSn solder, affecting electrical connectivity of components soldered afterburn-in. Isothermal aging of two ENEPIG surface finishes was performed at 75°C-150°C for 100 hrs-1500hrs to test the thermal aging limits and identify how loss of solderability occurs.
Technical Library | 2014-07-02 16:46:09.0
Growth behaviors of intermetallic compounds (IMCs) and Kirkendall voids in Cu/Sn/Cu microbump were systematically investigated by an in-situ scanning electron microscope observation. Cu–Sn IMC total thickness increased linearly with the square root of the annealing time for 600 h at 150°C, which could be separated as first and second IMC growth steps. Our results showed that the growth behavior of the first void matched the growth behavior of second Cu6Sn5, and that the growth behavior of the second void matched that of the second Cu3Sn. It could be confirmed that double-layer Kirkendall voids growth kinetics were closely related to the Cu–Sn IMC growth mechanism in the Cu/Sn/Cu microbump, which could seriously deteriorate the mechanical and electrical reliabilities of the fine-pitch microbump systems
1 |