Technical Library: any (Page 2 of 10)

Ball Grid Array (BGA) Voiding Affecting Functionality

Technical Library | 2020-11-09 16:59:53.0

A customer contacted ACI Technologies regarding a high failure rate of their assemblies. They provided assemblies to be X-rayed and inspected for the purpose of identifying any process related issues such as (but not limited to) solder and assembly workmanship and evidence of damage due to moisture related problems during reflow (a.k.a. "popcorning"). Moisture damage usually appears as physical damage to the component. The first indication of moisture damage would be externally observable changes to the package in the form of bulging or fractures to the outer surface of the component, an example of which is shown in Figure 1. Internally observable indicators of moisture damage typically include fractures to the die inside the package and lifted or fractured wire bonds. These conditions would be apparent during transmissive X-ray inspection. Another symptom of moisture related damage would be inconsistent solder joint sizes that result from package deformation during the liquidus phase of the reflow process. None of these indicators of moisture related damage were present on the customer samples.

ACI Technologies, Inc.

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Reliability Performance of Very Thin Printed Circuit Boards with regard to Different any Layer Manufacturing Technologies.

Technical Library | 2013-09-19 17:25:32.0

The next generation of smart phones will demand very thin multi-layer boards to reduce the product thickness again. This paper shows three different manufacturing approaches, which can be used for very thin any-layer build-ups. The technological approaches are compared on reliability level – the any-layer copper filled micro-via technology which is to be considered as state of the art technology for high end phones and the ALIVH-C/G technology that is well established in Japan. A test vehicle design featuring test coupons for comprehensive reliability test series has been defined as target application for investigation...

AT&S

Backplane Architecture High-Level Design

Technical Library | 2011-03-16 20:09:11.0

The backplane is the key component in any system architecture. The sooner one considers the backplane’s physical architecture near the beginning of a project, the more successful the project will be. This white paper introduces the concept of a backplane

Lamsim Enterprises Inc.

Designing a High Performance Electroless Nickel and Immersion Gold to Maximize Highest Reliability

Technical Library | 2020-11-15 21:22:11.0

The latest highest reliability requirements demand a high performance electroless nickel and immersion gold (HP ENIG). The new IPC specification 4552A has refocused the industry with reference to nickel corrosion. The interpretation of the existing specification, that judges corrosion on 3 levels, is complex and if misinterpreted can lead to phantom failures. An obvious way to avoid any potential misinterpretation is to eradicate any evidence of corrosion completely.

Atotech

Alternative Pb-Free Alloys

Technical Library | 2011-08-25 17:47:23.0

While SnAgCu (SAC) alloys still dominate Pb-free selection in North America, especially Sn3.0Ag0.5Cu (SAC305), there are alternative material systems available. Any OEM that is concerned about the high reflow temperatures of SAC or relies on ODM, it is im

DfR Solutions

RoHS: Five Years Later

Technical Library | 2011-12-01 16:57:22.0

Are electronics any “greener” than before RoHS? It is a fair question to ask. With the advent of RoHS on July 1, 2006, and more recently REACH, one might be inclined to answer that it is greener than it was. We will take a look at this question in several

Indium Corporation

why need Under vaccum potting machine for motor stator iginition coil

Technical Library | 2021-12-31 06:55:24.0

Any air entrapment in the potting compound can result in air bubbles that may cause performance problems in the finished component. Potting under vacuum is therefore frequently required to prevent air entrapment, especially with the increasingly small and complex assemblies required in today's electronics

Guangzhou Daheng Automation Equipment Co.,LTD

why need Under vaccum potting machine for motor stator iginition coil

Technical Library | 2021-12-31 06:56:02.0

Any air entrapment in the potting compound can result in air bubbles that may cause performance problems in the finished component. Potting under vacuum is therefore frequently required to prevent air entrapment, especially with the increasingly small and complex assemblies required in today's electronics

Guangzhou Daheng Automation Equipment Co.,LTD


any searches for Companies, Equipment, Machines, Suppliers & Information