Technical Library | 2021-11-22 20:44:44.0
Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).
Technical Library | 2013-08-07 21:52:15.0
PCB architectures have continued their steep trend toward greater complexities and higher component densities. For quality control managers and test technicians, the consequence is significant. Their ability to electrically test these products is compounded with each new generation. Probe access to high density boards loaded with micro BGAs using a conventional in-circuit (bed-of-nails) test system is greatly reduced. The challenges and complexity of creating a comprehensive functional test program have all but assured that functional test will not fill the widening gap. This explains why sales of automated-optical and automated X-ray inspection (AOI and AXI) equipment have dramatically risen...
1 |