Technical Library | 2023-09-15 10:05:59.0
Elevate your electronics manufacturing with SMT Online AOI. Achieve real-time quality control, defect detection, and production efficiency optimization with our advanced automated optical inspection system. Improve your production process and ensure top-notch quality with SMT Online AOI technology.
Technical Library | 2023-09-15 10:03:06.0
Enhance PCB assembly quality with our DIP Line Online PCBA AOI solution. Detect defects in real-time, streamline your production, and ensure top-notch quality assurance for your electronic components.
Technical Library | 2023-09-15 10:03:54.0
Achieve thorough quality control with our DIP On-line Dual Side PCBA AOI system. Detect defects on both sides of PCBAs in real-time, ensuring impeccable quality and production efficiency. Elevate your electronic manufacturing process today.
Technical Library | 2024-06-20 22:53:23.0
A leading electronic hearing device manufacturer reduced UV precise coating cycle time by 79% with advanced automation. A manual process of hand brushing UV coating onto components was replaced by an automated solution from Nordson to increase production volumes, improve quality, and reduce costs for this complex application. Download the paper to learn the details of the application.
Technical Library | 2012-12-17 22:05:22.0
Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.
Technical Library | 2015-04-29 03:29:56.0
Statistical Appearance Modelling technology enables an AOI system to “learn real world variation” based on operator interaction with inspection task results. This provides an accurate statistical description of normal variation in a product. With modelling technology, the user does not have to anticipate potential defects as the system will “flag” anything outside the “normal production range”. And, since the system is programmed with real production variation, it is sensitive to small subtle changes enabling reliable defect detection. Autonomous prediction of process variation enables an AOI system to be set up from a single PCB with production-ready performance. Setup time can be
Technical Library | 2012-02-23 21:16:28.0
Installed for the first time 20 years ago, Automated Optical Inspection (AOI) more recently has become an essential part of our SMT environment. Today, most process engineers are turning to machines as an inspection strategy for addressing quality and pro
Technical Library | 2017-08-28 17:14:41.0
PCB suppliers in the automotive space are vastly accelerating their time to market by using automated optical inspection (AOI) systems during PCB assembly. However, this next-generation technique is not limited in scope to the automotive industry – it has powerful implications for the entire PCB industry.
Technical Library | 2009-08-26 19:32:32.0
Automated optical inspection (AOI) and automated X-ray inspection (AXI) have been around for some time in various configurations and both have played a role in improving the quality of circuit boards. While some companies opt for one technology over the other, each form of inspection contributes its own unique benefit to the manufacturing process.
Technical Library | 2021-11-22 20:44:44.0
Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).