Technical Library: aoi pre reflow (Page 1 of 1)

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Return on Investment of a Pre-Reflow AOI System

Technical Library | 2015-06-30 22:02:41.0

This paper describes the losses from defects at the placement process in the SMT line. Two case studies of European and Taiwanese SMT manufacturers illustrate the actual losses from their defects. An evaluation method to select a pre-reflow AOI system maximizing the return on investment (ROI) is introduced. In the end, ROIs of three commercial pre-reflow AOI systems are compared to demonstrate the importance of selecting an appropriate AOI system. This paper will increase the probability that anyone installing an AOI system during the pre-reflow process will obtain a successful gain with short payback period.

CyberOptics Corporation

With Koh Young, Matric Group Delivers Breakthrough Operational Improvements

Technical Library | 2023-10-19 22:03:14.0

Koh Young Technology, the industry leader in True 3D measurement-based inspection solutions, proudly releases another customer success story with Matric Group. This case study shows how Matric Group has leveraged their partnership with Koh Young to be one of the first in the industry to use pre-reflow AOI as a game-changer for line efficiency and improved yield. All while creating a central inspection war room to allow just one person to manage all inline inspection, increasing automation, and control and mitigating talent shortages.

Koh Young America, Inc.

01005 Assembly, the AOI route to optimizing yield

Technical Library | 2009-07-15 12:14:31.0

The increasing demand for smaller & smaller portable electrical devices is leading to the increasing usage of extremely small components in the SMT assembly lines. With the introduction of 01005 packages in mass production, all the different stages of the line are facing new challenges: from board design, through component placement to reflow process. Each stage introduces some specific types of defect which are considered impossible to repair due to the small size of the package. AOI has become an essential tool to enable good yield in the assembly of 01005.

Vi TECHNOLOGY

Controlling Moisture during Inner layer Processing

Technical Library | 2024-09-02 18:48:58.0

The conversion to higher temperature "Lead Free" assembly reflow conditions has created an increased awareness that entrapped or absorbed moisture is a frequent root cause of thermally induced delamination at assembly reflow. There are two connected failure modes from entrapped moisture; incomplete resin cross-linking resulting in premature resin decomposition and also severe Z axis expansion from "explosive vaporization of the entrapped moisture at elevated temperatures at assembly reflow". Ultimately, both result in delamination failure. Other papers have shown the negative effects of entrapped moisture before lamination including delamination, red color, reduced thermal reliability and increased high speed signal loss. In this paper, various materials were tested for moisture sensitivity during lamination. Tests were performed at varying lamination conditions including a pre-vacuum step and "kiss" step. Pressure and cure temperature parameters were evaluated for minimizing or eliminating the effect of trapped moisture. Also included are the results of inner layer moisture removal baking conditions and their effect on peel strength and thermal reliability.

MacDermid, Inc.

An Intelligent Approach For Improving Printed Circuit Board Assembly Process Performance In Smart Manufacturing

Technical Library | 2021-08-04 18:46:25.0

The process of printed circuit board assembly (PCBA) involves several machines, such as a stencil printer, placement machine and reflow oven, to solder and assemble electronic components onto printed circuit boards (PCBs). In the production flow, some failure prevention mechanisms are deployed to ensure the designated quality of PCBA, including solder paste inspection (SPI), automated optical inspection (AOI) and in-circuit testing (ICT). However, such methods to locate the failures are reactive in nature, which may create waste and require additional effort to be spent re-manufacturing and inspecting the PCBs. Worse still, the process performance of the assembly process cannot be guaranteed at a high level. Therefore, there is a need to improve the performance of the PCBA process. To address the aforementioned challenges in the PCBA process, an intelligent assembly process improvement system (IAPIS) is proposed, which integrates the k-means clustering method and multi-response Taguchi method to formulate a pro-active approach to investigate and manage the process performance.

Hong Kong Polytechnic University [The]

  1  

aoi pre reflow searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
Solder Paste Dispensing

High Throughput Reflow Oven


Original SMT Feeders and spares for Panasonic, Fuji , Yamaha, Juki , Samsung