Technical Library | 2024-08-27 06:17:52.0
销售经理 电子邮件 WhatsApp Skype 乌娜 sales5@mooreplc.com 86-15359408275 +8615359408275 品牌/制造商: ◤ PU515A 3BSE032401R1 ◥ PU515A 的特性: MB300 双运河:使用 MB300 协议进行通信的运河,可能会连接到其他控制系统。 密码:PU515A 的最终目的是实现 PU515、PU518 或 PU519 的前模型。 由于 USB 端口:RTA 与其他表的区别,PU515A 不包括 USB 端口。 为什么选择我们 1.100%原装产品,100%质量保证,价格更具竞争力。 如果您发现假货,请立即联系我们!我们承担运费!我们将免费为您寄送新产品! 2.周到的服务 专业的售后服务。 3. 快速发货 我们有大量库存,可以立即发货。 推荐型号 本利内华达 330500-01-04 普罗软件 MVI94-MCM 本利内华达 330780-50-00 霍尼韦尔 05701-A-0301 本利内华达 330104-00-06-10-02-00 霍尼韦尔 FC-电源-UNI2450U 本利内华达 9571-50 普罗软件 MVI46-MNET 本利内华达 177230-00-01-05 霍尼韦尔 05704-A-0135 本利内华达 330180-51-CN ICS T8110B 通用电气 IC697ACC701 伍德沃德 8273-1011 本利内华达 136188-02 ABB HIEE300867R0001 PPB022 DE01 通用电气 IC695ETM001 特利科奈斯 3603E 易宝 PR6424/000-030 CON021 霍尼韦尔 51198685-100 SPS5710-2-LF 霍尼韦尔 CC-TUIO31 51306875-176 通用电气 DS200PTCTG1BAA 福克斯堡 FBM201 P0914SQ 通用电气 UR8LH 通用电气 IS210HSLAH1ADE 霍尼韦尔 CC-PAIH02 51405038-375 霍尼韦尔 51198947-100F 易宝 PR9268/200-000
Technical Library | 2021-02-04 02:02:43.0
200 °C) and high pressure. ... doi.org/10.1038/s41598-019-54045-w.
Technical Library | 2022-01-05 22:51:59.0
200 °C) and high pressure. In this paper, a small-molecule assisted approach based on dynamic reaction was proposed to dissolve thermosetting polymers containing ester groups and recycle electronic components from PCBs.
Technical Library | 2017-02-16 16:53:49.0
This experiment considers the reliability of a variety of different electronic components and evaluates them on 0.200” power computing printed circuit boards with OSP. Single-sided assemblies were built separately for the Top-side and Bottom-side of the boards. This data is for boards on the FR4-06 substrate.This paper was originally published by SMTA in the Proceedings of SMTA International.
Technical Library | 2014-03-13 15:25:01.0
A student competition paper at Budapest University of Technology And Economics, Department of Electronics Technology gives background, covers stencil design and discusses stencils intended for pin in paste application. The stencil applied for depositing the solder paste is a thin, 75–200 µm thick metal foil, on which apertures are formed according to the solder pads on the printed circuit board. Stencil printing provides a fast, mass solder paste deposition process; relatively expensive, appropriate and recommended for mass production.
Technical Library | 2019-09-24 15:41:53.0
This paper focuses on three different coating material groups which were formulated to operate under high thermal stress and are applied at printed circuit board manufacturing level. While used for principally different applications, these coatings have in common that they can be key to a successful thermal management concept especially in e-mobility and lighting applications. The coatings consist of: Specialty (green transparent) liquid photoimageable solder masks (LPiSM) compatible with long-term thermal storage/stress in excess of 150°C. Combined with the appropriate high-temperature base material, and along with a suitable copper pre-treatment, these solder resists are capable of fulfilling higher thermal demands. In this context, long-term storage tests as well as temperature cycling tests were conducted. Moreover, the effect of various Cu pre-treatment methods on the adhesion of the solder masks was examined following 150, 175 and 200°C ageing processes. For this purpose, test panels were conditioned for 2000 hours at the respective temperatures and were submitted to a cross-cut test every 500 h. Within this test set-up, it was found that a multi-level chemical pre-treatment gives significantly better adhesion results, in particular at 175°C and 200°C, compared with a pre-treatment by brush or pumice brush. Also, breakdown voltage as well as tracking resistance were investigated. For an application in LED technology, the light reflectivity and white colour stability of the printed circuit board are of major importance, especially when high-power LEDs are used which can generate larger amounts of heat. For this reason, a very high coverage power and an intense white colour with high reflectivity values are essential for white solder masks. These "ultra-white" and largely non-yellowing LPiSM need to be able to withstand specific thermal loads, especially in combination with high-power LED lighting applications. The topic of thermal performance of coatings for electronics will also be discussed in view of printed heatsink paste (HSP) and thermal interface paste (TIP) coatings which are used for a growing number of applications. They are processed at the printed circuit board manufacturing level for thermal-coupling and heat-spreading purposes in various thermal management-sensitive fields, especially in the automotive and LED lighting industries. Besides giving an overview of the principle functionality, it will be discussed what makes these ceramic-filled epoxy- or silicone-based materials special compared to using "thermal greases" and "thermal pads" for heat dissipation purposes.
Technical Library | 2015-08-06 19:17:53.0
Fine pitch/fine feature solder paste printing in PCB assembly has become increasingly difficult as board geometries have become ever more compact. The printing process itself, traditionally the source of 70% of all assembly defects, finds its process window narrowing. The technology of metal blade squeegees, with the aid of new materials, understanding, and settings such as blade angle, has kept pace with all but the smallest applications, e.g., 200μ - .50 AR and 150μ - .375 AR, which have been pushing blade printing technology to its limits. Enclosed media print head technology has existed, and has been under increasing development, as an alternative to metal squeegee blade printing. Until recently, the performance of enclosed print heads had been comparable to the very best metal squeegees, but advances in enclosed print media technology have now made it a superior alternative to squeegee blades in virtually all applications.
Technical Library | 2018-05-17 11:14:52.0
Intermetallic compound (IMC) growth is being studied in earnest in this past decade because of its significant effect the solder joint reliability. It appears that from numerous investigations conducted, excessive growth of IMC could lead to solder joint failure. Leading to this, many attempts has been made to determine the actual IMC thickness. However, precise and true representation of the growth in the actual 3D phenomenon from 2D cross-section investigations has remained unclear. This paper will focus on the measuring the IMC thickness using 3D surface profilometer (Alicona Focus G4). Lead free solder, Sn3.0Ag0.5Cu (SAC305) was soldered onto copper printed circuit board (Cu PCB). The samples were then subjected to thermal cycle (TC) storage process with temperature range from 0 °C to 100 °C for 200 cycles and up to 1000 cycles were completed.
1 |