Technical Library | 2019-03-15 16:26:50.0
While there have been quite dramatic and evident improvements in almost every facet of manufacturing over the last several decades owing to the advent and mass adoption of computer automation and networking, there is one aspect of production that remains stubbornly unaffected. Massive databases track everything from orders, to inventory, to personnel. CAD systems allow for interactive and dynamic 3D rendering and testing, digital troubleshooting, and simulation and analysis prior to mass production. Yet, with all of this computational power and all of this networking capability, one element of production has remained thoroughly and firmly planted in the past. Nearly all manufacturing or assembly procedures are created, deployed, and stored using methodologies derived from a set of assumptions that ceased to be relevant fifty years ago. This set of assumptions, referred to below as the “Paper Paradigm” has been, and continues as the dominant paradigm for manufacturing procedures to this day. It is time for a new paradigm, one that accounts for the vastly different technological landscape of this era, one that provides a simple, efficient interface, deep traceability, and dynamic response to rapidly changing economic forces.This paper seeks to present an alternative. Instead of enhancing and improving on systems that became irrelevant with the invention of a database, instead of propping up an outdated, outmoded and inefficient system with incremental improvements; rewrite the paradigm. Change the underlying assertions to more accurately reflect our current technological capability. Instead of relying on evolutionary improvements, it is time for a revolution in manufacturing instructions.
Technical Library | 2014-11-18 23:59:30.0
Performance degradation of packaging material is an important reason for the lifetime reduction of LED. In order to understanding the failure behavior of packaging material, silicone and phosphor were chosen to fabricate LED samples within which an aging test at 125℃ was performed. The result of online luminance measurement showed that LED samples with both silicone and phosphor had the highest luminance decay rate among all test samples because the carbonization of silicone and the consequent outgassing reduced the luminance quickly. The result of the luminance variance with test time was analyzed and an exponential decay model was developed with which the lifetime of LED under high temperature could be estimated.
Technical Library | 2016-04-08 01:19:52.0
PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.
Technical Library | 2023-11-14 19:19:10.0
Our core business is selective soldering. With a combined 25 years of experience in electronics manufacturing, Nordson SELECT is the combination of two highly innovative companies, ACE Production Technologies and InterSelect GmbH, dedicated to enabling the success of our global clients. With a reputation for innovation, all our comprehensive process solutions ensure our customers a maximum return on investment and the ability to achieve a low cost of ownership. Nordson SELECT is pleased to offer a full spectrum of award-winning selective soldering solutions, from compact and economical standalone models to multi-station in-line models with uncompromising high performance. From the initial process development, to full-scale production, our family of industry experts supports our worldwide customer base with anything and everything they may need to ensure their continuing success.
Technical Library | 2016-10-24 14:59:03.0
Temperature measurement is one of the most important physical parameters when determining quality, accuracy and reliability of processes not only in industrial use, but also in almost all human activities. Temperature sensors are produced with different technologies to fit specific application requirements. IST AG has concentrated one part of the development and manufacturing on high-end thin-film temperature sensors. This know-how is partially derived from the semiconductor industry and allows us to manufacture sensors with high accuracy, excellent long-term stability, high reliability and repeatability within a wide temperature range from -200 °C up to 1000 °C. Because of very small dimensions and low thermal mass, the thin-film temperature sensors exhibit a very short response time.
Technical Library | 2017-02-09 17:08:44.0
The SMT assembly world, especially within the commercial electronics realm, is dominated by no-clean solder paste technology. A solder paste flux residue that does not require removal is very attractive in a competitive world where every penny of assembly cost counts. One important aspect of the reliability of assembled devices is the nature of the no-clean solder paste flux residue. Most people in this field understand the importance of having a process that renders the solder paste flux residue as benign and inert as possible, thereby ensuring electrical reliability.But, of all the factors that play into the electrical reliability of the solder paste flux residue, is there any impact made by the age of the solder paste and how it was stored? This paper uses J-STD-004B SIR (Surface Insulation Resistance) testing to examine this question.
Technical Library | 2020-07-02 13:29:37.0
Industry standards such as J-STD-005 and JIS Z 3284-1994 call for the use of viscosity measurement(s) as a quality assurance test method for solder paste. Almost all solder paste produced and sold use a viscosity range at a single shear rate as part of the pass-fail criteria for shipment and customer acceptance respectively. As had been reported many times, an estimated 80% of the defects associated with the surface mount technology process involve defects created during the printing process. Viscosity at a single shear rate could predict a fatal flaw in the printability of a solder paste sample. However, false positive single shear rate viscosity readings are not unknown.
Technical Library | 2021-09-29 13:35:21.0
In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations. Selective soldering using dedicated plates with nozzles on the solder area is the preferred way to make these connections. All joints can be soldered in one dip resulting in short cycle times. Additional soldering on a small select nozzle can make the system even more flexible. The soldering can only be successful when there is enough thermal heat in the assembly before the solder touches the board. A forced convection preheat is a must for many applications to bring enough heat into the metal and board materials. The challenge in a dip soldering process is to get a sufficient hole fill without bridging and minimize the number of solder balls. A new cover was designed to improve the nitrogen environment. Reducing oxygen levels benefits the wetting, but increases the risk for solder balling. Previous investigations showed that solder balling can be minimized by selecting proper materials for solder resist and flux.
Technical Library | 2008-10-01 13:03:00.0
Many Original Equipment Manufacturers, (OEM’s), struggle to continue shipping aging or obsolete electronic products. Electronic products designed five to ten years ago are still relevant in the marketplace. Often these venerable old products have gained particular acceptance amongst a select group of customers. In many cases these old products fulfill a need in a unique manner. Examples include: designs that are grandfathered into an application due to regulatory considerations; designs having unique form-fit-and-function; designs running special software ; designs subject to contractual support and service requirements; designs in which a new contract stipulates delivery of older gear as part of a larger system offering. Any one or all of these reasons can lead an OEM to continue the production of electronic equipment well into its end of useful component life
Technical Library | 2014-12-24 19:22:52.0
For centuries, the squeegee blade has been used throughout many applications for depositing viscous materials through screens and stencils to transfer images on to substrates, from cloth material to electronic circuit boards. One area of blade printing mechanics that have been reviewed many times is the angle of attack of the blade. Typically it has been tested from 45 degrees to 60 degrees to optimize the printing quality and efficiency. However, this typically ends up as a compromise, from fill characteristics (45 degrees) to print definition (60 degrees). This paper will present the revolutionary performance of the profiled squeegee blade, which has recently been developed to create a virtual multi angle of attack for unsurpassed process control for all types of stencil printing processes.