Technical Library | 2012-01-05 18:40:07.0
Conformal coating is applied to circuit cards to provide a dielectric layer on an electronic board. This layer functions as a membrane between the board and the environment. With this coating in place, the circuit card can withstand more moisture by incre
Technical Library | 2024-07-24 00:51:44.0
A blade server system (BSS) utilizes voltage regulator modules (VRMs), in the form of quad flat no-lead (QFN) devices, to provide power distribution to various components on the system board. Depending on the power requirements of the circuit, these VRMs can be mounted as single devices or banked together. In addition, the power density of the VRM can be high enough to warrant heat dissipation through the use of a heat sink. Typically, at field conditions (FCs), the BSS are powered on and off up to four times per day, with their ambient temperature cycling between 258C and 808C. This cyclical temperature gradient drives inelastic strain in the solder joints due to the coefficient of thermal expansion (CTE) mismatch between the QFN and the circuit card. In addition, the heat sink, coupled with the QFN and the circuit card, can induce additional inelastic solder joint strain, resulting in early solder joint fatigue failure. To understand the effect of the heat sink mounting, a FEM (finite element model of four QFNs mounted to a BSS circuit card was developed. The model was exercised to calculate the maximum strain energy in a critical joint due to cyclic strain, and the results were compared for a QFN with and without a heat sink. It was determined that the presence of the heat sink did contribute to higher strain energy and therefore could lead to earlier joint failure. Although the presence of the heat sink is required, careful design of the mounting should be employed to provide lateral slip, essentially decoupling the heat sink from the QFN joint strain. Details of the modeling and results, along with DIC (digital image correlation) measurements of heat sink lateral slip, are presented.
Technical Library | 2024-06-19 15:23:54.0
Each year the semiconductor industry routes a significant volume of devices to recycling sites for no reliability or quality rationale beyond the fact that those devices were stored on a warehouse shelf for two years. This study identifies the key risks attributed to extended storage of devices in uncontrolled indoor environments and the risk mitigation required to permit safe shelf-life extension. Component reliability was evaluated after extended storage to assure component solderability, MSL stability and die surface integrity. Packing materials were evaluated for customer use parameters as well as structural integrity and ESD properties. Results show that current packaging material (mold compound and leadframe) is sufficiently robust to protect the active integrated circuits for many decades and permit standard reflow solder assembly beyond 15 years. Standard packing materials (bags, desiccant, and humidity cards) are robust for a 32 month storage period that can be extended by repacking with fresh materials. Packing materials designed for long term storage are effective for more than five years.
1 |