Technical Library | 1999-08-27 09:24:56.0
Dispensing conductive adhesives in an automated factory environment creates some special challenges. A robust production process starts with understanding the adhesives in their fluid state and which important parameters must be controlled. Developing this understanding requires experience with a large number of materials and valves over time. Common uses of conductive adhesives in surface mount applications, die attach applications, and gasketing are addressed. As vendors of dispensing equipment, the authors see a constant stream of such applications. Dispensing requirements, techniques, and equipment resulting from this experience are discussed. Guidelines for optimizing quality and speed are given.
Technical Library | 2011-11-25 16:07:47.0
The article presents virtual and real investigations related to current capacity and fusing of PCB traces in high power applications and is based on a scientific paper delivered by authors at SIITME 2010 in Romania. The reason of performing the research a
Technical Library | 2018-05-05 21:37:12.0
With the growing demand for manufacturing facilities, authorities took many actions to escalate the efficiency of production processes. Many formal methods were implemented for a longer period of time without acquiring significant growth in the field. But with the introduction of Autonomous Maintenance (AM) to the modern manufacturing facilities they achieved an increment in efficiency and productivity in a historical brisk pace. This article is about AM Step Zero too.
Technical Library | 2013-01-03 20:27:54.0
Electronics assemblies with large flip-chip BGA packages can be prone to either pad cratering or brittle intermetallic (IMC) failures under excessive PCB bending. Pad cratering cracks are not detected by electrical testing or non-destructive inspection methods, yet they pose a long term reliability risk since the cracks may propagate under subsequent loads to cause electrical failure. Since the initiation of pad cratering does not result in an instantaneous electrical signature, detecting the onset of this failure has been challenging. An acoustic emission methodology was recently developed by the authors to detect the onset of pad cratering. The instantaneous release of elastic energy associated with the initiation of an internal crack, i.e., Acoustic Emission (AE), can be monitored to accurately determine the onset of both pad cratering and brittle intermetallic (IMC) failures.
Technical Library | 2016-05-12 16:29:40.0
Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue.
Technical Library | 2017-11-15 22:49:14.0
While a significant level of voiding can be tolerated in solder joints where electrical conductivity is the main requirement, voiding at any level severely compromises thermal conductivity. For example, in LED lighting modules effective conduction of heat through the 1st level die attach to the substrate and then through the 2nd level attach to the heat sink is critical to performance so that voiding in the solder joints at both levels must be minimized. (...) In this paper, the authors will review the factors that influence the incidence of voids in small and large area solder joints that simulate, respectively, the 1st and 2nd level joints in LED modules and discuss mitigation strategies appropriate to each level. They will also report the results of a study on the effect on the incidence of voids of flux medium formulation and the optimization of the thermal profile to ensure that most of the volatiles are released early in the reflow process.
Technical Library | 2013-02-28 17:14:36.0
While it has long been known that the Cu6Sn5 intermetallic that plays a critical role in the reliability of solder joints made with tin-containing alloys on copper substrates exists in two different crystal forms over the temperature range to which electronics circuitry is exposed during assembly and service, it has only recently been recognized that the change from one form to the other has implications for solder joint reliability. (..) In this paper the authors report a study of the effect of cooling rates on Cu6Sn5 crystals. Cooling rates from 200°C ranged from 10°C/minute to 100°C/minute and the effect of isothermal ageing at intermediate temperatures was also studied. The extent of the phase transformation after each regime was determined using synchrotron X-ray diffraction. The findings have important implications for the manufacture of solder joints and their in-service performance... First published in the 2012 IPC APEX EXPO technical conference proceedings....
Technical Library | 2019-05-06 23:04:05.0
The temperature and humidity test chamber simulate the temperature and humidity, so there are a lot of things customers shoud notice in the process of use, although there is detailed instruction when purchasing the equipment. But some users just know how the device works and start using it. This is very easy to cause problems in the use of the equipment, so Symor intends to describe the safety details during the use of temperature and humidity chamber. 1. Before the test, determine if the sample contains flammable and explosive substances to avoid combustion or explosion during the test. Of course, also make sure there is no flammable and explosive material around the test equipment, otherwise it may cause fire and other accidents. 2, Do not open the chamber door to operate during the experiment, or the gas in the studio may cause the operator to burn and so on. 3. At the end of the test or at the time of regular cleaning of the test chamber, power off the equipment to avoid electrocution accidents. Also, when cutting off the equipment power, pull the power cord to pull out the plug, otherwise it may lead to a rupture of the power cord and so on. You can contact manufacturers if there are some places you donnot understand, do not dismantle and repair the temperature and humidity test chamber without authorization, otherwise it may lead to more serious problems.
Technical Library | 2019-09-04 21:35:53.0
Since the European Directives, RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), entered into force in 2006-7, the number of regulated substances continues to grow. REACH adds new substances roughly twice a year, and more substances will be added to RoHS in 2019. While these open-ended regulations represent an ongoing burden for supply chain reporting, some ability to remain ahead of new substance restrictions can be achieved through full material declarations (FMD) specifically the IPC-1752A Class D Standard (the "Standard"), which was developed by the IPC - Association Connecting Electronic Industries. What is important to the supply chain is access to user-friendly, easily accessible or free, fully supported tools that allow suppliers to create and modify XML (Extensible Markup Language) files as specified in the Standard. Some tools will provide enhancements that validate required data entry and provide real-time interactive messages to facilitate the resolution of errors. In addition, validation and auto-population of substance CAS (Chemical Abstract Service) numbers, and Class D weight rollup validation ensure greater success in the acceptance of the declarations in customer systems that automate data gathering and reporting. A good tool should support importing existing IPC-1752A files for editing; this capability reduces the effort to update older declarations and greatly benefits suppliers of a family of products with similar composition. One of the problems with FMDs is the use of "wildcard" non-CAS numbers based on a declarable substance list (DSL). While the substances in different company's lists tend to have some overlap, no two DSL’s are the same. We provide an understanding of the commonality and differences between representative DSLs, and the ability to configure how much of a non-DSL substance percent is allowed. Case studies are discussed to show how supplier compliance data, can be automatically loaded into the customer's enterprise compliance system. Finally, we briefly discuss future enhancements and other developments like Once an Article, Always an Article (O5A) that will continue to require IPC standards and supporting tools to evolve.
Technical Library | 2020-09-23 21:37:25.0
The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.
1 |