Technical Library: automation and 2000 (Page 3 of 4)

Basics of ASHCROFT Pressure Transmitter - Performance Index, Wiring, Thread Type, Unavoidable Inaccuracies and Mounting

Technical Library | 2021-11-29 01:10:58.0

ASHCROFT pressure transmitter is one of the most commonly used transmitters in industrial applications. It is widely used in a variety of control environments, involving water conservancy and hydropower, railway transportation, intelligent building, production automation, aerospace, military, petrochemical, oil wells, electric power, ships, machine tools and pipelines. ASHCROFT pressure transmitter is an electronic device that senses the pressure signal and converts it into an available output electrical signal according to certain rules.

OKmarts Industrial Parts Mall

Streaming Machine Learning and Online Active Learning for Automated Visual Inspection

Technical Library | 2021-11-22 20:39:44.0

Quality control is a key activity performed by manufacturing companies to verify product conformance to the requirements and specifications. Standardized quality control ensures that all the products are evaluated under the same criteria. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing and provided greater data availability. Such data availability has spurred the development of artificial intelligence models, which allow higher degrees of automation and reduced bias when inspecting the products. Furthermore, the increased speed of inspection reduces overall costs and time required for defect inspection. In this research, we compare five streaming machine learning algorithms applied to visual defect inspection with real world data provided by Philips Consumer Lifestyle BV. Furthermore, we compare them in a streaming active learning context, which reduces the data labeling effort in a real-world context. Our results show that active learning reduces the data labeling effort by almost 15% on average for the worst case, while keeping an acceptable classification performance. The use of machine learning models for automated visual inspection are expected to speed up the quality inspection up to 40%.

Jožef Stefan Institute

A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry

Technical Library | 2022-06-27 16:50:26.0

Electronics industry is one of the fastest evolving, innovative, and most competitive industries. In order to meet the high consumption demands on electronics components, quality standards of the products must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in quality inspection of various products. This technique is considered robust and can replace human inspectors who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection system consists of hardware and software setups. Hardware setup include image sensor and illumination settings and is responsible to acquire the digital image, while the software part implements an inspection algorithm to extract the features of the acquired images and classify them into defected and non-defected based on the user requirements. A sorting mechanism can be used to separate the defective products from the good ones. This article provides a comprehensive review of the various AOI systems used in electronics, micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms of the camera and lighting source selection and configuration. The inspection algorithms used for detecting the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed. The article concludes by highlighting the current trends and possible future research directions.

Institute of Electrical and Electronics Engineers (IEEE)

Soldering fume in electronics manufacturing - damaging effects and solutions for removal

Technical Library | 2017-11-10 00:58:37.0

Modern electronics manufacturing is made up by a multiplicity of different separation and joining processes, with the later surely taking the vast majority of production technology. Alongside gluing, welding and laser processes, soldering still holds a primary position in electronic assemblies. However, soldering does not always equal soldering, because there are quite a lot of different soldering technologies. Accordingly, you have to distinguish between automated and manual soldering procedures. No matter which soldering process you analyse, all of them have one aspect in common: they produce airborne pollutants, which may have a negative impact on employees, plants and products as well.

ULT Canada Sales Incorporated

A Unified CAD-PLM Architecture for Improving Electronics Design Productivity through Automation, Collaboration, and Cloud Computing

Technical Library | 2012-01-26 20:28:34.0

In electronics design, Computer Aided Design (CAD) tools manage part data in a logical schematic view (a part symbol) and a physical PCB view (a part footprint). Yet, a part has a third view, which CAD tools ignore – its supply data (Manufacturer part num

UCLA - Networked & Embedded Systems Laboratory

Fully automatic online shoe sole and upper spraying robot

Technical Library | 2019-05-23 21:56:56.0

Automatic on-line shoe sole spraying system: automatic shoe sole spraying system, simple and convenient operation, using 3D vision positioning system. Automatic recognition and automatic generation of spraying trajectory. Robot non-contact spraying gun is used to complete the process of shoe sole spraying with maturity, stability, high speed and high precision along the predetermined trajectory. The automatic generation of spraying trajectory is the realization of shoe sole spraying technology. Shoe sole spraying characteristics: 1.Positioning System: 3D Visual Positioning 2.Components: Intelligent Robot, Laser Scanner, Industrial Computer, Gum Spraying System, Conveyor Belt, Electrical Control System, etc. 3.Spraying time: slightly different according to shoe size and spraying time Fully automatic sole spraying advantages: 1. Simple application: suitable for soles of different specifications, models and sizes 2. Faster speed: 6-8 seconds to complete sole scanning and spraying, superior to similar products at home and abroad. 3. Quality stability: gum spraying trajectory is scheduled, gum dosage is fixed, gum spraying quality is greatly improved. 4. High cost performance: the same performance, the price is only 1/3 of the same type of equipment of European brand. 5. Reduce wear and tear: glue is fully utilized and not wasted, reducing human contact with glue. Intelligent operation advantage manual only need general operation can be automated workshop, mechanical arm automatic spraying glue, accurate spraying, reduce glue waste. Environmental protection effect of long-term close contact with glue seriously affects human health and mechanical work, glue does not directly contact, do not harm the human body. Fully automatic spraying, shoe sole adhesion process for automatic spraying machine, will not cause great challenges! With the deepening of personalized shoemaking, higher requirements have been put forward for the spraying technology in shoemaking process. The method of creating spraying trajectory must be adapted to shoes of different sizes and styles. The automatic generation of spraying trajectory is one of the key technologies to realize the automation of shoe sole spraying process. The method of off-line programming and real-time generation of spraying trajectory for robots based on the three-dimensional CAD model of sole and the data of sole. A new method of generating spray trajectory by scanning the sole of shoe upper with linear structured light sensor is presented. The feasibility of the method is verified by industrial robots. Aiming at the need of generating shoe sole spray rubber trajectory based on line structured light, the format standard of IGES file of three-dimensional model of shoe sole was tested. The shoe sole contour line and the shoe sole surface were extracted, and then the offset curve of the shoe sole contour line on the shoe sole surface was calculated to obtain the spray rubber trajectory. Three-dimensional profilometer is to use structured light to obtain sole information, effectively improve the automatic shoemaking spraying process, which will help to improve the efficiency of shoemaking, improve the quality of footwear products, and promote the development of personalized shoemaking.

YUSH Electronic Technology Co.,Ltd

What is an analog signature analyzer and how does it work?

Technical Library | 2020-11-19 20:35:26.0

Simultaneously with the first complex electronic circuits, the task of creating effective means of diagnosing and repairing them appeared. In previous decades, specialized programmable stands were used for diagnostics of serial electronic products, as well as various testers and probes for troubleshooting during their operation. But the dramatic increase in the density / cost factor, in parallel with the very rapid modification of electronic products, made programmable stands economically ineffective even in mass production. The use of traditional laboratory equipment (oscilloscopes, multimeters, etc.) requires power supply to the defective modules, which is often impossible and unsafe, since it can lead to failure of the working modules of the module. In addition, the use of this equipment requires documentation and highly qualified personnel. More automated and sophisticated signature analysis systems came to the rescue in solving this problem. A feature of these devices is that they allow you to test digital and analog assemblies without dismantling components and without supplying voltage.

Engineering Physics Center of MSU

A New Line Balancing Method Considering Robot Count and Operational Costs in Electronics Assembly

Technical Library | 2019-05-02 13:47:39.0

Automating electronics assembly is complex because many devices are not manufactured on a scale that justifies the cost of setting up robotic systems, which need frequent readjustments as models change. Moreover, robots are only appropriate for a limited part of assembly because small, intricate devices are particularly difficult for them to assemble. Therefore, assembly line designers must minimize operational and readjustment costs by determining the optimal assignment of tasks and resources for workstations. Several research studies address task assignment issues, most of them dealing with robot costs as fixed amount, ignoring operational costs. In real factories, the cost of human resources is constant, whereas robot costs increase with uptime. Thus, human workload must be as large and robot workload as small as possible for the given number of humans and robots. We propose a new task assignment method that establishes a workload balancing that meet precedence and further constraints.

Fujitsu Laboratories Ltd.

SMT Placement for ICs, Connectors and Odd-Shaped Components

Technical Library | 2009-11-18 23:37:52.0

Accurate component placement is a basic requirement for any pick and place machine. The first step towards accurate placement is accurate centering, or measurement of the component’s position on the placement head. One of the most widely used centering methods for ICs, connectors, and odd‐shaped components are a camera based system that measures the component position relative to a known point. Camera based centering systems include three main elements: lighting, camera, and software. Each of these elements are critical to obtaining an accurate measurement of the component and ultimately for accurate component placement on the PCB. As the old adage goes, the system is only as strong as its weakest link.

Juki Automation Systems

Design and Integration of aWireless Stretchable Multimodal Sensor Network in a Composite Wing

Technical Library | 2020-10-08 00:55:22.0

This article presents the development of a stretchable sensor network with high signal-to-noise ratio and measurement accuracy for real-time distributed sensing and remote monitoring. The described sensor network was designed as an island-and-serpentine type network comprising a grid of sensor "islands" connected by interconnecting "serpentines." A novel high-yield manufacturing process was developed to fabricate networks on recyclable 4-inch wafers at a low cost. The resulting stretched sensor network has 17 distributed and functionalized sensing nodes with low tolerance and high resolution. The sensor network includes Piezoelectric (PZT), Strain Gauge(SG), and Resistive Temperature Detector (RTD) sensors. The design and development of a flexible frame with signal conditioning, data acquisition, and wireless data transmission electronics for the stretchable sensor network are also presented. The primary purpose of the frame subsystem is to convert sensor signals into meaningful data, which are displayed in real-time for an end-user to view and analyze. The challenges and demonstrated successes in developing this new system are demonstrated, including (a) developing separate signal conditioning circuitry and components for all three sensor types (b) enabling simultaneous sampling for PZT sensors for impact detection and (c)configuration of firmware/software for correct system operation. The network was expanded with an in-house developed automated stretch machine to expand it to cover the desired area. The released and stretched network was laminated into an aerospace composite wing with edge-mount electronics for signal conditioning, processing, power, and wireless communication.

Stanford University

Previous 1 2 3 4  

automation and 2000 searches for Companies, Equipment, Machines, Suppliers & Information

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD
DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD is a company which mainly provide used and new SMT parts, provide repair SMT key parts service,new/used SMT machine trading,SMT consumables and Peripherals equipment,Clean room, ESD..

Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Distributor / Consultant / Service Provider

3th, Tangchang 3rd Road, Hengli, Dongguan City
Dongguan, China

Phone: 008615629932323

Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven
SMT spare parts - Qinyi Electronics

Training online, at your facility, or at one of our worldwide training centers"
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
Global manufacturing solutions provider

Wave Soldering 101 Training Course


Training online, at your facility, or at one of our worldwide training centers"