Technical Library: aways (Page 1 of 1)

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines

Technical Library | 2023-11-20 09:56:38.0

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines

Technical Library | 2023-11-20 09:56:42.0

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Lead-Free Soldering Guide

Technical Library | 2014-05-12 15:32:17.0

The issue of lead-free soldering has piqued a great deal of interest in the electronics assembly industry as of late. What was once an issue that seemed too far away to worry about has become a pressing reality. In order to avoid confusion, last minute panic, and a misunderstanding of how the issue of lead-free soldering will affect the industry and individuals users of solders, it is necessary for all suppliers and assemblers to become educated in this matter.

AIM Solder

Water Soluble Solder Paste, Wet Behind the Ears or Wave of the Future

Technical Library | 2017-03-22 20:58:08.0

Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.

FCT ASSEMBLY, INC.

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

Essentials about Printed Circuit Board Assembly

Technical Library | 2019-10-18 10:37:25.0

It usually does not make any logic to invest in costly fabrication equipment in case you just desire to spin some prototypes and rather outsource your Printed Circuit Board assembly as well as prototype fabrication to a trustworthy vendor. I would provide a few tips as to what to consider when seeking a contract manufacturer. The two most common procedures associated with Printed Circuit Board Assembly are through-hole technology and surface mount technology. Talking about the difference between through-hole technology and surface mount technology. Through-hole elements have metal leads, & these metal leads are supplied through-plated holes inside the circuit board. On the other hand, SMT elements might or might not have leads, nevertheless most significantly, they are developed to be soldered onto the surface of the circuit boards straight on the same side as the element body. A lot of contract manufacturers would provide a quick quote mechanism over their site for the fabrication of circuit boards as well as assembly of prototypes. This would bank your time when comparing various vendors. Ensure that the quote system facilitates you to fill your details, for instance, board material, thickness, copper thickness, milling, etc. in order that you can avail of a precise quote devoid of any surprises afterward. And this is quite necessary. Typically the cost per board would decline as quality upgrades. This is owing to the fairly high setup price of circuit board fabrication over and above component assembly. A few vendors would employ a system where they unite boards from various consumers. This manner the setup price would be circulated among numerous clients. When you fabricate an item, you clearly don’t desire to have to fabricate a big quantity of boards straight away whilst you improve your design. One restriction with small quantity prototypes though is that the option of materials & material thicknesses would be constrained. In case you are employing a particular material then opportunities are there will not be any other clients employing the same material. Additionally, lead time plays a major role in indecisive prices. A longer lead time facilitates the fabricator more liberty in slotting your fabrication. This is basically reflected in cheaper prices that would view in the quote section. Clearly, if you are in a hurry and desire to be moved to the summit of the pile you would require splurging more dollars. Ensure that your contract fabricator would support the file sort for producing which you offer. The most general format for printed circuit board fabrication is the Gerber format nonetheless a few vendors would moreover embrace board files from general printed circuit board software products. A few suppliers also provide in house printed circuit design. Even in case, you create your board yourself, choosing a vendor with design services might prove resourceful in case there is an issue with your files. In this scenario, your vendor could make swift changes that would neglect pricey delays. If you are looking for an Electronic Manufacturing Services (EMS Assembly) provider, then the web is the best to search.

Optima Technology Associates, Inc.

  1  

aways searches for Companies, Equipment, Machines, Suppliers & Information

High Throughput Reflow Oven

Wave Soldering 101 Training Course
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
PCB Handling Machine with CE

Training online, at your facility, or at one of our worldwide training centers"
SMT feeders

High Precision Fluid Dispensers