Technical Library | 2021-02-17 22:41:48.0
This review provides an overview of electrochemical sensors for nitrogen species, especially, ammonium, nitrate, and nitrite. Due to the extensive anthropogenic activities, the concentration of nitrogen species has been dramatically increased in the environment. In particular, fertilizers containing ammonium and nitrate have been extensively used in agriculture where as nitrite-included additives or preservatives have been used in food industry. Since excessive nitrogen species have an adverse effect to environment and human health such as eutrophication and methemoglobinemia (blue baby syndrome), efforts have been made to develop efficient monitoring methods. On that account, the U.S Environmental Protection Agency (EPA) established the maximum contaminant level (MCL) for nitrate and nitrite to be 10mg/L nitrate-N and 1mg/L nitrite-N in drinking water, respectively. Typical analytical methods for nitrogen species are chromatography or spectrometry. However, these methods require expensive instrumentations, skilled operator, and considerable sample pretreatment and analysis time. As an alternative approach, electrochemical sensors have been explored to monitor nitrogen species owing to its simplicity, superior sensitivity, versatility, rapidity, field applicability, and selectivity. In this review, electrochemical based detection methods for nitrogen species especially ammonium, nitrate and nitrite are systematically discussed, including the fundamentals of electrochemical techniques, sensing mechanisms, and the performance of each sensor. doi.org/10.1016/j.snr.2020.100022
1 |