Technical Library | 2018-09-21 10:12:53.0
Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.
Technical Library | 2022-09-12 14:07:47.0
Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.
Technical Library | 2024-09-02 18:48:58.0
The conversion to higher temperature "Lead Free" assembly reflow conditions has created an increased awareness that entrapped or absorbed moisture is a frequent root cause of thermally induced delamination at assembly reflow. There are two connected failure modes from entrapped moisture; incomplete resin cross-linking resulting in premature resin decomposition and also severe Z axis expansion from "explosive vaporization of the entrapped moisture at elevated temperatures at assembly reflow". Ultimately, both result in delamination failure. Other papers have shown the negative effects of entrapped moisture before lamination including delamination, red color, reduced thermal reliability and increased high speed signal loss. In this paper, various materials were tested for moisture sensitivity during lamination. Tests were performed at varying lamination conditions including a pre-vacuum step and "kiss" step. Pressure and cure temperature parameters were evaluated for minimizing or eliminating the effect of trapped moisture. Also included are the results of inner layer moisture removal baking conditions and their effect on peel strength and thermal reliability.
Technical Library | 2019-08-14 22:20:55.0
Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.
Technical Library | 2018-06-20 13:11:57.0
Manufacturers test to ensure that the product is built correctly. Shorts, opens, wrong or incorrectly inserted components, even catastrophically faulty components need to be flagged, found and repaired. When all such faults are removed, however, functional faults may still exist at normal operating speed, or even at lower speeds. Functional board test (FBT) is still required, a process that still relies on test engineers’ understanding of circuit functionality and manually developed test procedures. While functional automatic test equipment (ATE) has been reduced considerably in price, FBT test costs have not been arrested. In fact, FBT is a huge undertaking that can take several weeks or months of test engineering development, unacceptably stretching time to market. The alternative, of selling products that have not undergone comprehensive FBT is equally, if not more, intolerable.
1 |