Technical Library: balanced pcb (Page 1 of 1)

SELECTIVE SOLDERING TECHNOLOGY SELECTION

Technical Library | 2023-11-14 19:42:24.0

Selective soldering is not a new process. It is already exists and used 30 years ago for through-hole component by different industries for automotive and medical products. Now most manufacturing industries are moving forward on SMD's miniaturization to reduce PCB complexity and balance component density on the board to ensure a good assembling process. By this concept, why selective soldering still utilized and used? Does it because of component reliability, uniqueness or complexity having this in mind next question will be which platform will best fit for the product

Shenzhen Kaifa Technology Co., Ltd.

Just‐In‐Time Material Management for the PCB Industry

Technical Library | 2017-11-03 13:34:15.0

As with any production industry, businesses in the PCB industry need to maintain a healthy balance between the components they keep in stock and those they use for meet client orders. Ordering too many components comes with serious disadvantages, as does not ordering enough, and PCB manufacturers need to stay as close as possible to a happy medium between the two.

Power Design Services

To Quantify a Wetting Balance Curve

Technical Library | 2017-10-19 01:17:56.0

Wetting balance testing has been an industry standard for evaluating the solderability of surface finishes on printed circuit boards (PCB) for many years. A Wetting Balance Curve showing Force as a function of Time, along with the individual data outputs "Time to Zero" T(0), "Time to Two-Thirds Maximum Force" T(2/3), and "Maximum Force" F(max) are usually used to evaluate the solderability performance of various surface finishes. While a visual interpretation of the full curve is a quick way to compare various test results, this method is subjective and does not lend itself readily to a rigorous statistical evaluation. Therefore, very often, when a statistical evaluation is desired for comparing the solderability between different surface finishes or different test conditions, one of the individual parameters is chosen for convenience. However, focusing on a single output usually doesn't provide a complete picture of the solderability of the surface finish being evaluated.In this paper, various models here-in labeled as "point" and "area" models are generated using the three most commonly evaluated individual outputs T(0), T(2/3), and F(max). These models have been studied to quantify how well each describes the full wetting balance curve. The solderability score (S-Score) with ranking from 0 to 10 were given to quantify the wetting balance curve as the result of the model study, which corresponds well with experimental results.

Enthone

How to choose the material of PCB ?

Technical Library | 2019-12-30 02:09:39.0

How to choose the material of PCB ? The choice of PCB material must meet the design requirements, the quality of production and cost need to achieve a balance. The design requirements include electrical and institutional parts. This material problem is usually important when designing very high speed PCB boards (frequencies greater than GHz). For example, the commonly used FR-4 material may not be used when dielectric loss at several GHz frequencies, which can have a significant effect on signal attenuation . In the case of electrical, it is important to note whether the dielectric constant and the dielectric loss are combined at the designed frequency

PCBONLINE

Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy

Technical Library | 2021-10-20 18:21:06.0

The solderability of the SAC305 alloy in contact with printed circuit boards (PCB) having different surface finishes was examined using the wetting balance method. The study was performed at a temperature of 260 _C on three types of PCBs covered with (1) hot air solder leveling (HASL LF), (2) electroless nickel immersion gold (ENIG), and (3) organic surface protectant (OSP), organic finish, all on Cu substrates and two types of fluxes (EF2202 and RF800). The results showed that the PCB substrate surface finish has a strong effect on the value of both the wetting time t0 and the contact angle h. The shortest wetting time was noted for the OSP finish (t0 = 0.6 s with EF2202 flux and t0 = 0.98 s with RF800 flux), while the ENIG finish showed the longest wetting time (t0 = 1.36 s with EF2202 flux and t0 = 1.55 s with RF800 flux). The h values calculated from the wetting balance tests were as follows: the lowest h of 45_ was formed on HASL LF (EF2202 flux), the highest h of 63_ was noted on the OSP finish, while on the ENIG finish, it was 58_ (EF2202 flux). After the solderability tests, the interface characterization of cross-sectional samples was performed by means of scanning electron microscopy coupled with energy dispersive spectroscopy.

Foundry Research Institute

  1  

balanced pcb searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830