Technical Library: balling (Page 3 of 7)

High Reliability and High Throughput Ball Bumping Process Solution – Solder Joint Encapsulant Adhesives

Technical Library | 2018-04-05 10:40:43.0

The miniaturization of microchips is always driving force for revolution and innovation in the electronic industry. When the pitch of bumps is getting smaller and smaller the ball size has to be gradually reduced. However, the reliability of smaller ball size is getting weaker and weaker, so some traditional methods such as capillary underfilling, corner bonding and edge bonding process have been being implemented in board level assembly process to enhance drop and thermal cycling performance. These traditional processes have been increasingly considered to be bottleneck for further miniaturization because the completion of these processes demands more space. So the interest of eliminating these processes has been increased. To meet this demand, YINCAE has developed solder joint encapsulant adhesives for ball bumping applications to enhance solder joint strength resulting in improving drop and thermal cycling performance to eliminate underfilling, edge bonding or corner bonding process in the board level assembly process. In this paper we will discuss the ball bumping process, the reliability such as strength of solder joints, drop test performance and thermal cycling performance.

YINCAE Advanced Materials, LLC.

Warpage Measurement of PCB With 3D Metrology

Technical Library | 2011-06-09 13:29:17.0

Flatness measurement of electronic parts and assemblies, or PCB’s, has become increasingly critical as geometries become smaller: finer pitches, smaller solder ball volumes, thinner substrates, etc. Additionally, processing temperatures vary and can pla

NANOVEA

Head-in-Pillow BGA Defects

Technical Library | 2009-11-05 11:17:32.0

Head-in-pillow (HiP), also known as ball-and-socket, is a solder joint defect where the solder paste deposit wets the pad, but does not fully wet the ball. This results in a solder joint with enough of a connection to have electrical integrity, but lacking sufficient mechanical strength. Due to the lack of solder joint strength, these components may fail with very little mechanical or thermal stress. This potentially costly defect is not usually detected in functional testing, and only shows up as a failure in the field after the assembly has been exposed to some physical or thermal stress.

AIM Solder

Challenges on ENEPIG Finished PCBs: Gold Ball Bonding and Pad Metal Lift

Technical Library | 2017-09-07 13:56:11.0

As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.

Teledyne DALSA

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

Assembly and Reliability of 1704 I/O FCBGA and FPBGAs

Technical Library | 2013-03-14 17:19:28.0

Commercial-off-the-shelf ball/column grid array packaging (COTS BGA/CGA) technologies in high reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronic packages. This talk briefly discusses an overview of packaging trends for area array packages from wire bond to flip-chip ball grid array (FCBGA) as well as column grid array (CGA). It then presents test data including manufacturing and assembly board-level reliability for FCBGA packages with 1704 I/Os and 1-mm pitch, fine pitch BGA (FPBGA) with 432 I/Os and 0.4-mm pitch, and PBGA with 676 I/Os and 1.0-mm pitch packages. First published in the 2012 IPC APEX EXPO technical conference proceedings.

Jet Propulsion Laboratory

Copper Wire Bond Failure Mechanisms.

Technical Library | 2014-07-24 16:26:34.0

Wire bonding a die to a package has traditionally been performed using either aluminum or gold wire. Gold wire provides the ability to use a ball and stitch process. This technique provides more control over loop height and bond placement. The drawback has been the increasing cost of the gold wire. Lower cost Al wire has been used for wedge-wedge bonds but these are not as versatile for complex package assembly. The use of copper wire for ball-stitch bonding has been proposed and recently implemented in high volume to solve the cost issues with gold. As one would expect, bonding with copper is not as forgiving as with gold mainly due to oxide growth and hardness differences. This paper will examine the common failure mechanisms that one might experience when implementing this new technology.

DfR Solutions (acquired by ANSYS Inc)

Investigation of the Mechanical Properties of Mn-Alloyed Tin-Silver-Copper Solder Solidified with Different Cooling Rates

Technical Library | 2021-09-08 13:43:56.0

Manganese can be an optimal alloying addition in lead-free SAC (SnAgCu) solder alloys because of its low price and harmless nature. In this research, the mechanical properties of the novel SAC0307 (Sn/Ag0.3/Cu0.7) alloyed with 0.7 wt.% Mn (designated as SAC0307-Mn07) and those of the traditionally used SAC305 (Sn96.5/Ag3/Cu0.5) solder alloys were investigated by analyzing the shear force and Vickers hardness of reflowed solder balls. During the preparation of the reflowed solder balls, different cooling rates were used in the range from 2.7 K/s to 14.7 K/s.

Budapest University of Technology and Economics


balling searches for Companies, Equipment, Machines, Suppliers & Information

Voidless Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
SMT feeders

Reflow Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

Stencil Printing 101 Training Course
Circuit Board, PCB Assembly & electronics manufacturing service provider

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.